Matlab_meshgrid()_griddata()
meshgrid()
生成绘制3D图形所需的网格数据。
数据:(x, y, z)采样数据的坐标对。
语法:
[X, Y] = meshgrid(x, y)
解释:
输出X的每一行的数值都是复制的x的值;输出Y的每一列的数值都是复制的y的值。
[X, Y]=meshgrid(x)与[X, Y]=meshgrid(x, x)是等同的
[X, Y, Z]=meshgrid(x, y, z)生成三维数组,可用来计算三变量的函数和绘制三维立体图
相关函数:plot3、mesh、surf、automesh、ndgrid
griddata()
数据网格化。MATLAB散乱点插值函数,Python中的三维点插值。
语法:
Z = griddata(x, y, z, X, Y)
[X, Y, Z] = griddata(x, y, z, X, Y)
[…] = griddata(…, method)
[…] = griddata(…, method, options)
说明:
Z= griddata(x, y, z, X, Y) 调整形如z = f(x, y)的曲面,使之与非等间距矢量(x, y, z)中的数据吻合。
griddata 函数在指定的(X, Y)点处插补此曲面,生成Z. 此曲面一定通过这些数据点。X和Y通常构成均匀网格(与meshgrid函数生成的相同)。X可以是行矢量,这种情况下该矢量确定一个具有固定列数的矩阵。与之类似,Y可以是列矢量,确定一个具有固定行数的矩阵。
[X, Y, Z] = griddata(x, y, z, X, Y) 函数返回与上述矩阵相同的插补后的矩阵Z。并返回由行矢量x和列矢量y形成的矩阵X和Y。后者与meshgrid 函数返回的矩阵相同。
[…] = griddata(…, method)使用规定的插补方法:
‘linear’ 基于三角形的线性插补法(缺省)
‘cubic’ 基于三角形的三次插补法
‘nearest’ 最近邻居插补法
‘v4’ MATLAB 4 griddata方法。
这些方法定义了匹配数据点的曲面类型。‘cubic’ 和 ‘v4’ 方法生成平滑曲面,而 ‘linear’ 和 ‘nearest’ 分别具有一阶导数和零阶导数不连续。除’v4’ 外所有方法基于数据的三角化。
[…] = griddata(…, method, options)指定一串将通过delaunayn函数(三角剖分)在Qhull中使用的单元阵列选项。如果选项为[],则使用缺省的三角化选项。如果选项为{’’}, 不使用任何选项,包括缺省选项。有时,griddata 函数可能将位于数据凸壳上或靠近凸壳的点返回为NaNs。这是因为有时计算中的圆整处理使得很难确定一个靠近边界的点是否处于凸壳内。
内容整理自百度百科