leetcode 路径总和 -- 递归

这篇博客详细介绍了如何使用递归方法解决LeetCode中的112题——路径总和。通过从根节点开始,递归检查左右子节点,判断是否存在一条路径使得路径上的节点值之和等于给定的目标值。时间复杂度为O(N),空间复杂度为O(H),其中N是节点数,H是树的高度。
摘要由CSDN通过智能技术生成

0 题目描述

leetcode原题链接:112. 路径总和
在这里插入图片描述

1 递归解法

假定从根节点到当前节点的值之和为 val,我们可以将这个大问题转化为一个小问题:是否存在从当前节点的子节点到叶子的路径,满足其路径和为 sum - val。
不难发现这满足递归的性质,若当前节点就是叶子节点,那么我们直接判断 sum 是否等于 val 即可(因为路径和已经确定,就是当前节点的值,我们只需要判断该路径和是否满足条件)。若当前节点不是叶子节点,我们只需要递归地询问它的子节点是否能满足条件即可。

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def hasPathSum(self, root: TreeNode, sum: int) -> bool:
        if not root: return False
        if not root.left and not root.right: 
            return sum == root.val
        return self.hasPathSum(root.left, sum-root.val) or self.hasPathSum(root.right, sum-root.val)

复杂度分析

  • 时间复杂度: O ( N ) , O(N), O(N), 其中 N N N 是树的节点数。对每个节点访问一次。
  • 空间复杂度: O ( H ) O (H) O(H), 其中 H H H 是树的高度。空间复杂度主要取决于递归时栈空间的开销, 最坏情 况下,树呈现链状,空间复杂度为 O ( N ) O(N) O(N) 。平均情况下树的高度与节点数的对数正相关,空间复杂度为 O ( log ⁡ N ) 。  O(\log N)_{\text {。 }} O(logN) 

参考资料

路径总和 - I

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值