题目大意
k只麻球,每活一天就会死亡,但第二天可能会生一些麻球,具体是 生i个麻球的概率为pi ,求m天后所有麻球都死亡的概率。
LRJ such a dog,你给我个错的翻译。
分析
用f(i)表示一开始有1只麻球,i天后死亡的概率。
显然有
f(0)=0
f(i)=∑j=0n−1(Pj∗f(i−1)j)
ans=f(m)k
根据递推式求解即可。
代码
#include<cstdio>
#include<cmath>
#define MAXN 1000
#define MAXM 1000
int T,n,m,k;
double f[MAXM+10],p[MAXN+10];
void Read(int &x){
char c;
while(c=getchar(),c!=EOF)
if(c>='0'&&c<='9'){
x=c-'0';
while(c=getchar(),c>='0'&&c<='9')
x=x*10+c-'0';
ungetc(c,stdin);
return;
}
}
void read(){
Read(n),Read(k),Read(m);
for(int i=0;i<n;i++)
scanf("%lf",&p[i]);
}
void solve(){
int i,j;
double t;
for(i=1;i<=m;i++){
t=1,f[i]=0;
for(j=0;j<n;j++){
f[i]+=p[j]*t;
t*=f[i-1];
}
}
}
int main()
{
int cnt=0;
Read(T);
while(T--){
read();
solve();
printf("Case #%d: %.7lf\n",++cnt,pow(f[m],k));
}
}