自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 收藏
  • 关注

原创 logistic函数,sigma函数性质

性质:(1)g(-z)=1-g(z)(2)g' = g(1-g)=g(z)*g(-z)(3)几率:因为:ln(g / 1-g) = z; 可见符合sigma的概率分布的几率是‘线性’(4)一个事件发生的概率可以用其‘机率的logistic函数表示’******************************************

2014-11-17 15:01:50 23791

原创 牛顿法和拟牛顿法

一。两种方法本质:和梯度下降法的本质一样都是为了找到一个合适的最快的下降方向,然后以一定步长一步一步走到极值点二。牛顿法:1、传统牛顿法(数学中)2、传统牛顿法在机器学习的推广:机器学习中需要做的是,参考‘回归分析’求J在参数向量为自变量的最小值注意,上面需要重复若干次直到两次的参数相差不大3、传统牛顿

2014-11-17 14:17:50 1597

原创 用最直白的方式来解释‘批梯度下降’和‘随机梯度下降’

我们需要求最优值的函数是:其中一。理解批梯度:1、求J梯度(梯度是向量,每个坐标是J对其取偏导,所以可以认为梯度向量是J对向量求偏导):梯度向量G————过程推导比较简单,省略右侧表达式是一个向量(x本身是特征向量,括号中是一个数,加和m还是一个向量)可见每一组都可以求一个梯度*********************************

2014-11-17 14:00:34 1089

原创 非参数估计

一。特点:1、不需要用表达式来表示总体的概率密度,然后估计这表达式里的未知数,而是直接用样本来估计这个总体概率密度二。分类:(1)parzen窗(核密度估计 kernel density estimate KDE),注意,虽然叫‘核密度’,但是使用的是‘窗函数’而不是核函数,一般认为核函数的作用参见‘核函数、mercer条件’(2)k近邻(3)神经网络

2014-11-17 10:37:24 1110

原创 参数估计

一。特点:1、需要估计的整体概率密度可以使用一个‘表达式’(里面含有未知参数)表示,则参数估计的目的就是估计表达式的这些未知参数2、二。分类:点估计:(1)矩估计(2)极大似然估计(3)贝叶斯估计区间估计:相当于得到两次点估计,一个为下界,一个为上界,由此构成一个区间三。点估计:1、矩估计:

2014-11-17 10:13:19 2386

原创 各种回归全解:传统回归、逻辑回归、加权回归/核回归、岭回归、广义线性模型/指数族

一。前言:1、回归分析有两类用途:1、拟合预测。2、分类2、一些标记:x为输入的特征向量组,每个特征向量为n维(表示有n个特征)y为特征向量对应的类别对于训练样本来说:表示第i个样本(x,y),i=1……m(表示一共m个训练样本)表示第i个特征向量的第1、2个特征值为‘回归拟合系数’,所以对应x的维度,为n维二。传统的线性回归(只能做拟合

2014-11-16 22:46:09 19862 2

原创 越研究这个领域,越觉得一个人伟大,补上一篇迟来的悼文

因为第一次买智能机,所以开始涉猎这个行业,1月有余,我竟然没喜欢上任何一款,相反,却渐渐地迷恋上了一个人——史蒂芬·乔布斯活这么大,经历很多改变世界的变化,但是只有这一次,是全部只和一个人有关,这一点非常奇妙,这是一个现实版的个人英雄主义,而事实是,乔布斯比英雄更了不起,乔布斯确实改变了世界,这一点毫无疑问,但是他是如何改变世界的呢,是他创造了一个新东西,然后变成了人们的习惯,

2014-11-15 18:59:32 813

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除