各种回归全解:传统回归、逻辑回归、加权回归/核回归、岭回归、广义线性模型/指数族

本文深入探讨了回归分析的各类模型,包括传统线性回归、局部加权线性回归(核回归)、岭回归以及逻辑回归。线性回归主要应用于连续变量的预测,而逻辑回归则适用于二分类问题。文中详细阐述了各种回归模型的优化过程、适用条件及优缺点,如线性回归的高斯分布假设、LWLR的局部计算特点和逻辑回归的二项分布特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一。前言:


1、回归分析有两类用途:1、拟合预测。2、分类


2、一些标记:

x为输入的特征向量组,每个特征向量为n维(表示有n个特征)
y为特征向量对应的类别
对于训练样本来说:


表示第i个样本(x,y),i=1……m(表示一共m个训练样本)
表示第i个特征向量的第1、2个特征值
为‘回归拟合系数’,所以对应x的维度,为n维



二。传统的线性回归


(只能做拟合预测,因为最终是使得误差最小时得到一条拟合直线,只能预测点的y值,y值连续,所以不涉及分类)


1、目标:让‘整体’误差最小




所以这是一个‘最优化’问题

2、最优化前提:


(1)认为误差服从高斯分布




偶然误差也叫‘随机误差’

(2)实际上这个误差不一定是高斯分布,如果想让这个误差是高斯分布前提是:特征样本x是高斯分布


3、最优化过程:


(1)通过高斯分布求概率



注意:这里面均值取0的意义是:就像核密度估计时采用高斯窗也没有均值
在我们对某一事物的概率分布的情况下。如果某一个数在观察中出现了,我们可以认为这个数的概率密度很比大,和这个数比较 近的数的概率密度也会比较大,而那些离这个数远的数的概率密度会比较小。
但是方差一定有,代表了带宽

(2)使用最大似然


得到似然函数L


注意,之所以是求l(theta)最大,是因为,求误差最小,误差在高斯的x位置,也即x为0最好,高斯x为0时函数取最大,所以是求l(theta)最大

(3)求均方和误差最小


对向量 求偏导

***********************************************************************************
注意:

*********************************************
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值