一。前言:
1、回归分析有两类用途:1、拟合预测。2、分类![]()
2、一些标记:
x为输入的特征向量组,每个特征向量为n维(表示有n个特征)
y为特征向量对应的类别
对于训练样本来说:

表示第i个样本(x,y),i=1……m(表示一共m个训练样本)


二。传统的线性回归
(只能做拟合预测,因为最终是使得误差最小时得到一条拟合直线,只能预测点的y值,y值连续,所以不涉及分类)
1、目标:让‘整体’误差最小

所以这是一个‘最优化’问题
2、最优化前提:
(1)认为误差服从高斯分布

偶然误差也叫‘随机误差’
(2)实际上这个误差不一定是高斯分布,如果想让这个误差是高斯分布前提是:特征样本x是高斯分布
3、最优化过程:
(1)通过高斯分布求概率

注意:这里面均值取0的意义是:就像核密度估计时采用高斯窗也没有均值
在我们对某一事物的概率分布的情况下。如果某一个数在观察中出现了,我们可以认为这个数的概率密度很比大,和这个数比较 近的数的概率密度也会比较大,而那些离这个数远的数的概率密度会比较小。
但是方差一定有,代表了带宽
(2)使用最大似然
得到似然函数L

注意,之所以是求l(theta)最大,是因为,求误差最小,误差在高斯的x位置,也即x为0最好,高斯x为0时函数取最大,所以是求l(theta)最大
(3)求均方和误差最小
对向量
求偏导

***********************************************************************************
注意:

*********************************************