Python 画分布图

1.使用seaborn包

import matplotlib.pyplot as plt
import seaborn as sns
sns.set()    # 设置画图空间为 Seaborn 默认风格。
# 自己导入data
sns.distplot(data, norm_hist=True, hist=True, kde=False, color='r',
             hist_kws={"alpha": 1.0, "linewidth": 1.5}, label='data_label')
plt.show(block=True)

sns.distplot()集合了matplotlib的hist()与核函数估计kdeplot的功能,参考Python可视化 | Seaborn5分钟入门(一)——kdeplot和distplot_python sns.kdeplot_易执的博客-CSDN博客

norm_hist:若为True,则直方图高度显示密度而非计数(含有kde图像中默认为True)

hist:是否显示直方图,默认True

kde:是否显示核密度估计曲线图,默认True

2023.3.15更新

2.结合numpy 与 matplotlib 

import numpy as np
import matplotlib.pyplot as plt
N = 100
hist, bin_edges = np.histogram(data, bins=N)
cdf = np.cumsum(hist / sum(hist))
plt.plot(cdf)

直方图的柱子数为N

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值