非负矩阵分解与K-means聚类

1. 对称非负矩阵分解(Symmetric NMF)与Kernel K-means聚类

1.1 Kernel K-means聚类

假设数据的形式为一个m×n的矩阵X,n表示样本的个数,m表示一个样本的特征维度:

聚成K个类,其中每个类的中心表示为:

K-means的目标函数为最小化以下平方误差和:

                                                            (1)

用K个非负指示向量表示聚类的解,第k个类:

很明显hk为单位向量且两两正交,令 ,因此H为正交矩阵,满足

引入H,将公式(1)的范数展开,写成迹的形式:

                                                                                                                  (2)

由于公式(2)的第一项是常数,令,K-means的目标函数可以转化为(注意非负性与正交性

                                                                                                             (3)

W矩阵(表示原始矩阵X点与点之间的相似性?)是标准的内积线性核矩阵,可以被替换成任意核函数。

利用非线性转换,公式(1)可以转换为

                                                                        (4)

忽略公式(4)的第一项(常数),令核矩阵,核K-means聚类简化为公式(3)。

1.2 对称非负矩阵分解(Symmetric NMF)

对称非负矩阵分解目标函数:

                                                                                                                                   (5)

定理1. 松弛正交约束的核K-means与对称非负矩阵分解等价。

证明:从K-means的目标函数公式(3)着手,转换为

            (6)

公式(6)中添加了两个常量(因为有正交约束才成立),放松(忽略)公式(6)的正交约束即与对称非负矩阵分解等价。#

观察2. 对称非负矩阵分解可以保留H的近似正交性。

证明:通过公式(6)的推导我们可以看出,对称非负矩阵分解的目标函数等价于同时满足

(1);(2)

对于第2个目标函数,

因为,所以近似为一个常量。

因此第2个目标函数可以变成,确保了H(列)的近似正交性。

H的列正交性保证H的每一行只能有一个非零元素,意味着每一个数据样本只属于一个类。这就是hard-clustering(K-means)。

近似正交性放松了这个条件,每个数据样本可能属于多个类。这就是soft-clustering。

 

 

 

 

 

 

 

 

 

 

 

 

  • 4
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值