考题5
描述
二维平面上,给定n
个点{ai}和m个点{bi},且保证这n+m个点中,任意两个点的x坐标和y
坐标均不相同。
对于每个bi
,判断是否存在由3个ai,aj,ak(1≤i,j,k≤n,i≠j≠k)点组成的三角形包含bi(在三角形边上也算包含;允许三点共线的三角形,此时只有bi
在三点中任意两点的线段上才算包含)。
输入
第一行为一个整数n
。接下来n行,其中第i行有两个整数,表示ai
的横纵坐标。
第一行为一个整数m
。接下来m行,其中第i行有两个整数,表示bi
的横纵坐标。
输出
输出m
行,第i行为一个整数0或1,分别表示是否存在一个三角形包含该bi
。
样例1输入
3
1 -6
-10 -3
1 6
3
-2 7
-4 -3
-3 2
样例1输出
0
1
1
样例1解释
如图,绿点为A,红点为B。2号、3号红点均包含于3个绿点里。