贪心算法
在数据结构中,我们学习过普里姆算法,是一种在无向边中查找最短路径算法.
现在来看看贪心算法,在我脑中的.
以NYOJ1057为例
描述
给出一个整数N,每次可以移动2个相邻数位上的数字,最多移动K次,得到一个新的整数。
求这个新的整数的最大值是多少。
输入
多组测试数据。
每组测试数据占一行,每行有两个数N和K (1?≤?N≤?10^18; 0?≤?K?≤?100).
输出
每组测试数据的输出占一行,输出移动后得到的新的整数的最大值。
样例输入
1990 1
100 0
9090000078001234 6
样例输出
9190
100
9907000008001234
来源
原创
上传者
TC_李远航
1. 首先从数字的第一位开始遍历
2. 每一次遍历的最后一个点,是可以用的步数
3. 直到步数等于0 就输出
4. 每一次在可用步数中查找最大个数
5. 记录下标,然后用步数减去下标加上起点
6. 在找到最大值后对数据进行交换位置的处理
#include <iostream>
#include <cstdio>
using namespace std;
#include <string.h>
char num[19];
int main()
{
int k ;
while(cin>>num>>k){
if(k==0){
cout << num << endl;
continue;
}
//sprintf(num, "%d", n);
int length = strlen(num);
int start = 0 ; //从第一个开始遍历
int step = 0; //交换次数不可以超过k多少步;
char tmp ;
for( int i = 0 ; i < length ; i++ ){
tmp = num[i];//初始比较值
int index = 0;
int flag = 1;
for(int j = i+1 ; j<=i+k && j<length ; j++){//从i 后面一个开始查找最大数 查找范围是现有步长之内
if(num[j]>tmp){
tmp = num[j];
index = j;
flag = 0 ;
}
}
if(!flag){
for( int q=index; q>i ; q--){
tmp = num[q];
num[q] = num[q-1];
num[q-1] = tmp;
}
k = k - index + i;
}
if(k==0){
break;
}
}
cout << num<< endl;
}
return 0;
}