先将数组排序,再得到第k大的数的个数,n-k是可选择的数的个数,于是,问题便转化成了求Ck(n-k)的大小,由于此题中的数据较大,便采用逆元求组合数的方法。
(a/b)%mod=(a*b^(mod-2))%mod
#include<bits/stdc++.h>
using namespace std;
int fen[1010],fac[1010];
const int f=1e9+7;
#define ll long long
bool cmp(int a , int b)
{
return a>b;
}
ll qpow(ll a,ll b)
{
ll ans=1;
while(b)
{
if(b % 2)
{
ans = ans * a % f;
}
a = a * a % f;
b /= 2;
}
return ans % f;
}
ll C(ll n , ll m){
ll ans1= 1 , ans2 = 1 , ans3 = 1 ;
for(ll i = 1 ; i <= n ; i++)
ans1 = ans1 * i % f ;
for(ll i = 1 ; i <= m ; i++)
ans2 = ans2 * i % f ;
for(ll i = 1 ; i <= n - m ; i++)
ans3 = ans3 * i % f ;
return ans1 * qpow(ans2 , f - 2) % f * qpow(ans3 , f - 2 ) % f ;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
memset(fen,0,sizeof(fen));
int n,k;
scanf("%d%d",&n,&k);
for(int i = 1 ; i <= n ; i++)
{
scanf("%d", &fen[i]);
}
sort( fen + 1 ,fen + 1 + n , cmp);
int flag = fen[k];
ll sum1 = 0 , sum2 = 0;
for( int i = 1 ; i <= n ; i++)
{
if(fen[i] == flag && i <= k)
{
sum1++;
}
else if(fen[i] == flag && i > k)
{
sum2++;
}
}
ll a = C(sum1 + sum2 , sum1 );
printf("%lld\n",a);
}
}