题意:
已知若干时刻的单调栈大小,求一个合法的序列
思路:
对于该单调栈不同时刻同样大小时,可以得出这样一个结论:越晚加入单调栈的元素(即下标越大)一定比之前加入的小
可采取反证法证明此结论:在不同时刻栈大小相同的情况下,若后加入的元素大于先加入的元素,则后加入的元素无法将先加入的元素剔除从而导致后加入的元素会使得栈大小+1,与条件矛盾。
其次,对于该单调栈不同时刻不同大小时,可以得出这样一个显而易见结论:大的时候加入的元素一定比小的时候加入的元素大
综上两条结论,可以得出这样一个行之有效的解题方法:先将表示栈大小的数组b填补完整,将不同时刻的栈的大小值(也就是b数组)放入一个优先队列中,将栈的大小按照从小到大排列,对于大小相同的值,则按照下标从大到小排列,之后依次弹出队列中的每个元素,给其递增赋值,每次赋值较上一次赋值+1,下标则是对应的合法序列的下标。
#include<bits/stdc++.h>
using namespace std;
#define ll long long
struct node{
int index;
int x;
friend bool operator < (node a, node b)
{
if(a.x == b.x)
return a.index < b.index;
return a.x > b.x;
}
};
priority_queue<node>q;
int b[1000010];
int a[1000010];
node now;
int main()
{
int n,k;
cin>>n>>k;
while(k--)
{
int p,x;
cin>>p>>x;
b[p] = x;
}
for(int i = 1; i <= n; i++)
{
if(b[i] == 0)
b[i] = b[i-1]+1,now.index = i,now.x = b[i],q.push(now);
else
now.index = i,now.x = b[i],q.push(now);
}
for(int i = 1; i <= n; i++)
{
if(b[i]-b[i-1] > 1)
{
cout<<"-1";
return 0;
}
}
int cnt = 0;
while(q.size())
{
now = q.top();
q.pop();
a[now.index] = ++cnt;
}
for(int i = 1; i <= n; i++)
cout<<a[i]<<" ";
}