牛客暑假多校训练营2.K—stack

传送门

题意:

已知若干时刻的单调栈大小,求一个合法的序列

思路:

对于该单调栈不同时刻同样大小时,可以得出这样一个结论:越晚加入单调栈的元素(即下标越大)一定比之前加入的小
可采取反证法证明此结论:在不同时刻栈大小相同的情况下,若后加入的元素大于先加入的元素,则后加入的元素无法将先加入的元素剔除从而导致后加入的元素会使得栈大小+1,与条件矛盾。
其次,对于该单调栈不同时刻不同大小时,可以得出这样一个显而易见结论:大的时候加入的元素一定比小的时候加入的元素大
综上两条结论,可以得出这样一个行之有效的解题方法:先将表示栈大小的数组b填补完整,将不同时刻的栈的大小值(也就是b数组)放入一个优先队列中,将栈的大小按照从小到大排列,对于大小相同的值,则按照下标从大到小排列,之后依次弹出队列中的每个元素,给其递增赋值,每次赋值较上一次赋值+1,下标则是对应的合法序列的下标。

#include<bits/stdc++.h>
using namespace std;
#define ll long long
struct node{
	int index;
	int x;
	friend bool operator < (node a, node b)
	{
		if(a.x == b.x)
		return a.index < b.index;
		return a.x > b.x;
	}
};
priority_queue<node>q;

int b[1000010];
int a[1000010];
node now;

int main()
{
	int n,k;
	cin>>n>>k;
	while(k--)
	{
		int p,x;
		cin>>p>>x;
		b[p] = x;
	}
	for(int i = 1; i <= n; i++)
	{
		if(b[i] == 0)
		b[i] = b[i-1]+1,now.index = i,now.x = b[i],q.push(now);
		else
		now.index = i,now.x = b[i],q.push(now);
	}
	for(int i = 1; i <= n; i++)
	{
		if(b[i]-b[i-1] > 1)
		{
			cout<<"-1";
			return 0;
		}
	}
	int cnt = 0;
	while(q.size())
	{
		now = q.top();
		q.pop();
		a[now.index] = ++cnt;
	}
	
	for(int i = 1; i <= n; i++)
	cout<<a[i]<<" ";
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值