PTA7-1 迷宫寻路 (20分)

7-1 迷宫寻路 (20分)
给定一个M行N列的迷宫图,其中 “0"表示可通路,“1"表示障碍物,无法通行。在迷宫中只允许在水平或上下四个方向的通路上行走,走过的位置不能重复走。
5行8列的迷宫如下:
0 1 1 1 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0
0 1 1 1 0 1 1 0
1 0 0 0 0 0 0 0
则从左上角(1,1)至右下角(5,8)的最短路径为:
1,1–》2,1–》2,2–》2,3–》3,3–》3,4–》3,5–》4,5–》5,5–》5,6–》5,7–》5,8
题目保证每个迷宫最多只有一条最短路径。
请输出该条最短路径,如果不存在任何通路,则输出"NO FOUND”.
输入格式:
第一行,输入M和N值,表示迷宫行数和列数。
接着输入M行数值,其中,0表示通路,1表示障碍物。每列数值用空格符间隔。
接下来可能输入多组迷宫数据。
当输入M的值为-1时结束输入。
输出格式:
按行顺序输出路径的每个位置的行数和列数,如 x,y
如果不存在任何路径,则输出"NO FOUND”.
每组迷宫寻路结果用换行符间隔。
输入样例:
在这里给出一组迷宫。例如:

8 8	
0 0 1 0 0 0 1 0
0 0 1 0 0 0 1 0
0 0 0 0 1 1 0 0
0 1 1 1 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0
0 1 1 1 0 1 1 0
1 0 0 0 0 0 0 0
4 4	
0 0 1 0
0 0 0 0
0 0 1 1 
0 1 0 0
-1 -1

输出样例:
在这里给出相应的输出。例如:

1,1
2,1
3,1
4,1
5,1
5,2
5,3
6,3
6,4
6,5
7,5
8,5
8,6
8,7
8,8

NO FOUND

程序思路:
(1)从入口元素开始,判断它上下左右的邻边元素是否满足条件,如果满足条件就入队列;
(2)取队首元素并出队列。寻找其相邻未被访问的元素,将其如队列并标记元素的前驱节点为队首元素;
(3)重复步骤(2),直到队列为空(没有找到可行路径)或者找到了终点。最后从终点开始,根据节点的前驱节点找出一条最短的可行路径。
程序实现:

#include<bits/stdc++.h>
using namespace std;
/** 
 * Map是STL的一个关联容器,它提供一对一(其中第一个可以称为关键字,每个关键字只能在map中出现一次,第二个可能称为该关键字的值)的数据处理能力,
 * 由于这个特性,它完成有可能在我们处理一对一数据的时候,在编程上提供快速通道。
 * 这里说下map内部数据的组织,map内部自建一颗红黑树(一种非严格意义上的平衡二叉树),这颗树具有对数据自动排序的功能,
 * 所以在map内部所有的数据都是有序的,后边我们会见识到有序的好处。在一些特殊情况,比如关键字是一个结构体,涉及到排序就会出现问题,
 * 因为它没有小于号操作,insert等函数在编译的时候过不去,既然是没有‘<’,那我们自己重载小于操作符应该就可以了。
*/
struct site{
	int x,y,k;
	friend bool operator<(const struct site& a, const struct site& b) {
        if (a.x < b.x ||
            (a.x == b.x && a.y < b.y)) {
            return true;
        }
        return false;
    }
}p[100];//将到终点的路线逆向保存
int main(){
	int m, move[4][2] = { {1,0} , {0,1} , {-1,0} , {0,-1} };//用二维数组分别表示下右上左
	cin>>m;
	while(m != -1) {
		map<site,site> f;//用来记录前驱
		int n,a[100][100],flag = 1;
		struct site temp;
		queue<site> q;
		cin>>n;
		for(int i = 1; i <= m; i++) 
			for (int j = 1; j <= n; j++)
				cin>>a[i][j];
		for(int i = 1; i <= m; i++) {//将周围用墙围起来
			a[i][0] = 1;
			a[i][n+1] = 1;
		}
		for (int j = 1; j <= n; j++){//将周围用墙围起来
			a[0][j] = 1;
			a[m+1][j] = 1;
		}
		temp.x = 1;
		temp.y = 1;
		q.push(temp);
		a[1][1] = 6;//搜索过的地方值变为6
		while(!q.empty()){
			temp = q.front();//取队首坐标
			q.pop();
			int x = temp.x, y = temp.y;
			if(x == m && y == n) {//如果找到终点
				flag = 0;
				int k = 0;
				p[k++] = temp;
				while(temp.x != 1 || temp.y != 1){//将到终点的路线逆向保存
					p[k++] = f[temp];
					temp = f[temp];
				}
				for(int i = k-1; i >= 0; i--)//输出路线
					cout<<p[i].x<<','<<p[i].y<<endl;
				break;
			}
			for (int w = 0; w < 4; w++) {//遍历四个方向
				temp.x = x + move[w][0];
				temp.y = y + move[w][1];
				if(a[temp.x][temp.y] == 0){
					q.push(temp);
					a[temp.x][temp.y] = 6;//搜索过的地方值变为6
					f[temp].x = x;
					f[temp].y = y;
				}
			}
		}
		if(flag)
			cout<<"NO FOUND";
		cout<<endl;
		cin>>m;
	}
	return 0;
}
  • 6
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
程序在VC++ 6下顺利编译通过。 一、 实验目的: (1) 熟练掌握链栈的基本操作及应用。 (2) 利用链表作为栈的存储结构,设计实现一个求解迷宫的非递归程序。 二、实验内容: 【问题描述】 以一个m×n的长方阵表示迷宫,0和1表示迷宫通路和障碍。设计一个程序,对信任意设定的迷宫,求出一条从入口到出口的通路,或得出没有通路的结论。 【基本要求】 首先实现一个链表作存储结构的栈类型,然后编写一个求解迷宫的非递归程序。求得的通路以三元组(i,j,d)的形式输出,其:(i,j)指示迷宫一个坐标,d表示走到下一坐标的方向。如:对于下数据的迷宫,输出的一条通路为:(1,1,1),(1,2,2),(2,2,2),(3,2,3),(3,1,2),……。 【测试数据】 迷宫的测试数据如下:左上角(1,1)为入口,右下角(8,9)为出口。 1 2 3 4 5 6 7 8 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 以方阵形式输出迷宫及其通路。 输出: 请输入迷宫的长和宽:5 5 请输入迷宫内容: 0 1 1 0 0 0 0 1 1 0 1 0 0 1 1 1 0 0 1 0 1 1 0 0 0 迷宫的路径为 括号内的内容表示为(坐标,坐标,数字化方向,方向) (1,1,1,↓) (2,1,2,→) (2,2,1,↓) (3,2,1,↓) (4,2,2,→) (4,3,1,↓) (5,3,2,→) (5,4,2,→) (5,5,0,) 迷宫路径探索成功!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏安   

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值