3. 实战(一):Spring AI & Trae ,助力开发微信小程序

1、前言

前面介绍了Spring boot快速集成Spring AI实现简单的Chat聊天模式。今天立马来实战一番,通过Trae这个火爆全网的工具,来写一个微信小程序。照理说,我们只是极少量的编码应该就可以完成这项工作。开撸~

2、需求描述

微信小程序实现一个页面,页面上输入一个姓名,点击生成就可以生成对应的藏头诗,并可以根据指定的风格生成。手绘了下页面整体布局:

3、环境准备

  • IntelliJ IDEA 2024.3
  • 微信开发工具
  • 硅基流动API,这里需要提前注册申请
  • Trae AI

4、快速开始

4.1、后端服务(Spring Boot + Spring AI)

由于我这里有线程的后端框架,因此我这里就不使用Trae来帮我生成了。

4.1.1、搭建Spring Boot工程

新建一个项目,添加Spring boot相关依赖,这里我就不赘述了。直接贴出pom.xml:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>3.4.2</version>
        <relativePath/> <!-- lookup parent from repository -->
    </parent>
    <groupId>top.shamee</groupId>
    <artifactId>chai-said-cloud</artifactId>
    <version>0.0.1-SNAPSHOT</version>
    <packaging>pom</packaging>

    <properties>
        <java.version>21</java.version>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
        </dependency>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter</artifactId>
        </dependency>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
        </dependency>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>

        <!-- Spring Boot DevTools (Optional for auto-reloading during development) -->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-devtools</artifactId>
            <scope>runtime</scope>
        </dependency>
        
        <dependency>
            <groupId>com.mysql</groupId>
            <artifactId>mysql-connector-j</artifactId>
        </dependency>

        <dependency>
            <groupId>com.baomidou</groupId>
            <artifactId>mybatis-plus-boot-starter</artifactId>
            <exclusions>
                <exclusion>
                    <artifactId>mybatis-spring</artifactId>
                    <groupId>org.mybatis</groupId>
                </exclusion>
            </exclusions>
        </dependency>
        <dependency>
            <groupId>org.mybatis</groupId>
            <artifactId>mybatis-spring</artifactId>
            <version>3.0.3</version>
        </dependency>

        <dependency>
            <groupId>com.baomidou</groupId>
            <artifactId>dynamic-datasource-spring-boot-starter</artifactId>
        </dependency>

        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>druid-spring-boot-starter</artifactId>
        </dependency>

    </dependencies>

    <dependencyManagement>
        <dependencies>
            <dependency>
                <groupId>org.projectlombok</groupId>
                <artifactId>lombok</artifactId>
                <version>1.18.36</version>
            </dependency>

            <dependency>
                <groupId>com.mysql</groupId>
                <artifactId>mysql-connector-j</artifactId>
                <version>8.0.33</version>
            </dependency>

            <dependency>
                <groupId>com.baomidou</groupId>
                <artifactId>mybatis-plus-boot-starter</artifactId>
                <version>3.5.5</version>
            </dependency>

            <dependency>
                <groupId>com.baomidou</groupId>
                <artifactId>dynamic-datasource-spring-boot-starter</artifactId>
                <version>3.6.1</version>
            </dependency>

            <dependency>
                <groupId>com.alibaba</groupId>
                <artifactId>druid-spring-boot-starter</artifactId>
                <version>1.2.11</version>
            </dependency>
        </dependencies>
    </dependencyManagement>

    <build>
        <resources>
            <resource>
                <directory>src/main/java</directory>
                <includes>
                    <include>**/*.xml</include>
                </includes>
                <filtering>true</filtering>
            </resource>
            <resource>
                <directory>src/main/resources</directory>
                <includes>
                    <include>**/*.properties</include>
                    <include>**/*.xml</include>
                    <include>**/*.yml</include>
                </includes>
                <filtering>false</filtering>
            </resource>
        </resources>
        <plugins>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-maven-plugin</artifactId>
                <configuration>
                    <mainClass>top.shamee.chailauncher.ChaiLauncherApplication</mainClass>     <!-- 取消查找本项目下的Main方法:为了解决Unable to find main class的问题 -->
                    <classifier>execute</classifier>    <!-- 为了解决依赖模块找不到此模块中的类或属性 -->
                </configuration>
                <executions>
                    <execution>
                        <goals>
                            <goal>repackage</goal>
                            <goal>build-info</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>

</project>

因为我这里集成了MySQL,以及做了多模块。因此我这里的pom稍微复杂了一些,大家可以按需裁剪。

4.1.2、集成Spring AI

注意这里Spring Boot版本必须选用3.2以上的版本,这里使用3.4.2,同时使用JDK21。这里添加Spring AI相关依赖:

<dependency>
    <groupId>org.springframework.ai</groupId>
    <artifactId>spring-ai-openai-spring-boot-starter</artifactId>
</dependency>

<dependency>
    <groupId>org.springframework.ai</groupId>
    <artifactId>spring-ai-spring-boot-autoconfigure</artifactId>
</dependency>

<dependencyManagement>
    <dependencies>
        <dependency>
            <groupId>org.springframework.ai</groupId>
            <artifactId>spring-ai-bom</artifactId>
            <version>1.0.0-SNAPSHOT</version>
            <type>pom</type>
            <scope>import</scope>
        </dependency>
    </dependencies>
</dependencyManagement>

4.1.3、添加启动类

@Slf4j
//@MapperScan("top.shamee")
@SpringBootApplication(scanBasePackages = {"top.shamee"})
public class ChaiLauncherApplication {

    public static void main(String[] args) {
        ConfigurableApplicationContext context = SpringApplication.run(ChaiLauncherApplication.class);
        ConfigurableEnvironment environment = context.getEnvironment();
        log.info("""
                        
                        ---------------------------------------------------------- 
                        应用 '{}' 运行成功! 当前环境 '{}' !!! 端口 '[{}]' !!!
                        ----------------------------------------------------------
                 """,
                environment.getProperty("spring.application.name"),
                environment.getActiveProfiles(),
                environment.getProperty("server.port"));
    }

}

到此,项目基本搭建完毕。

4.1.4、编写Spring AI相关接口

由于这里要实现的是一个输入用户姓名,通过OpenAI接口生成藏头诗的功能。因此接口入口参数为:inputName(姓名)和inputStype(生成风格),返回生成的内容。

首先定义参数input:

@Data
public class GenPoemInput implements Serializable {

    private String inputName;
    private String inputStyle;

    public String getPrompt(){
        return "用“" + getInputName() + "”写一首藏头诗,要求风格" + getInputStyle() + ",诗词为七言诗";
    }
}

接着编写controller类:

@Slf4j
@RestController
@RequestMapping("/chai/gen-record")
public class GenRecordController {

    private final ChatClient chatClient;
    public GenRecordController(ChatClient.Builder chatClientBuilder) {
        this.chatClient = chatClientBuilder.build();
    }

    @Resource
    private GenRecordService genRecordService;

    @PostMapping("/openai")
    ResponseEntity<String> openai(@RequestBody GenPoemInput genPoemInput) {
        log.info("请求参数: {}", genPoemInput);
        String result = this.chatClient.prompt(new Prompt())
                .user(genPoemInput.getPrompt())
                .call()
                .content();
        return ResponseEntity.ok(result);
    }
}

application.properties需要配置我们的OpenAi相关API KEY:

配置属性:

  • spring.ai.openai.chat.options.model为配置的大模型
  • spring.ai.openai.chat.base-url为大模型的请求url,默认为openai.com
  • spring.ai.openai.chat.api-key为大模型对应的api key

最后启动工程类,请求下接口看下是否正常:

curl -i -X POST \
   -H "Content-Type:application/json" \
   -d \
'{
  "inputName":"秦始皇",
  "inputStype": "幽默"
}' \
 'http://localhost:8080/chai/gen-record/openai'

生成内容,成功:

4.2、前端开发(微信小程序 + Trae)

小程序代码,这里我们使用Trae来实现。我们给Trae一个提示词:

  1. 你是一个经验丰富的微信小程序UI工程师,熟悉微信的UI设计,设计风格简约明朗
  2. 你将负责设计微信小程序的UI
  3. 我会给你一个设计图,你需要解析这个图片,并设计生成一个小程序,实现这个页面功能。

并将我们手绘的prd传给他:

接着就是静静的等待了:

很快他就生成好了我们所需要的代码,点击全部接受,调整到我们的代码结构中。生成的代码结构还是符合微信小程序的代码结构的:

直接打开微信开发工具,就可以直接预览到我们的页面。剩下的就是中间不断地让Trae按照我们地要求进行细化地调整。最终的效果:

4.3、程序部署

前后端代码都就绪后,接下来就是部署了。由于小程序需要https请求,且域名需要经过严格的ICP备案,才可以正常使用。这里消耗了些时间,SSL都可以免费搞定,ICP备案比较耗时,需要走流程。
当然我们开发本地可以不校验https域名,可以在开发工具上先体验:

试下效果看看:

效果还是很不错,样式,JS代码都帮直接帮我们搞定。真的很香!!!

5、总结

到此,基本程序编码时间不到1小时就可以完全搞定,主要耗费时间的就是在不断的AI调整上。当然可能前面给的提示词比较粗糙也有关系,大家可以认真的给到一段提示信息,应该就不需要花过多时间去调整细化。
代码我还未上传到Github,大家有需要可以私聊我,或者等我有空我上传到Github:https://github.com/Shamee99
真正经验的是,我只是简单手绘了一个PRD草稿,Trae就可以代替我写出相关代码,而且还原度接近90%。大家细品~

&lt;think&gt;好的,我需要帮助用户了解如何将微信小程序的代码迁移到Taro框架下运行。首先,我得回忆下Taro的相关知识,特别是迁移步骤。根据用户提供的引用内容,引用[1]提到Taro支持使用React语法编写并输出多端代码,包括微信小程序和App。引用[3]提到Touch WX工程可以编译成微信小程序代码,但用户的问题相反,是要将现有的微信小程序代码迁移到Taro。引用[4]提到用户之前可能使用原生技术栈,现在需要迁移到Taro。 首先,我需要整理迁移步骤。可能需要安装Taro环境,初始化项目结构,然后处理原有代码,比如页面、组件和配置。微信小程序的页面有四个文件(.js, .wxml, .wxss, .json),而Taro使用React风格的单个文件,比如.jsx或.tsx,样式可能用.scss或.css。因此,需要将这四个文件整合到Taro的组件或页面中。 然后,配置方面,微信小程序的app.json在Taro中是config/index.js,需要调整配置项。还有,Taro的API和微原生API可能有所不同,需要替换为Taro的API,比如wx.request换成Taro.request。 另外,引用[3]提到Touch WX的组件基于自定义组件机制,可能Taro也有类似的组件库,或者需要适配原有组件。用户可能需要检查组件兼容性,或者使用Taro的UI库。 测试和调试也是关键步骤,确保迁移后的代码在Taro中运行正常,然后编译到目标平台。可能还需要处理差异,比如使用条件编译处理不同平台的代码。 最后,用户可能需要优化和调整代码结构,遵循Taro的最佳实践,比如按功能组织代码,使用Hooks等。 现在需要将这些步骤结构化,分点说明,确保用户能逐步操作。同时,根据用户提供的引用,正确标注引用来源,例如引用[1]和引用[3]。还要生成相关问题,比如迁移后的优化、多端兼容处理等。&lt;/think&gt;### 如何在Taro中运行微信小程序代码的迁移步骤 要将微信小程序原生代码迁移到Taro框架下运行,需遵循以下步骤: --- #### **1. 初始化Taro项目** - 安装Taro CLI工具: ```bash npm install -g @tarojs/cli taro init my-app ``` 选择对应框架(如React)和编译模式(如微信小程序/App)[^1]。 --- #### **2. 调整代码结构** - **页面文件整合**: Taro使用单文件组件(`.jsx`/`.tsx`),需将微信小程序的四个文件(`.js`, `.wxml`, `.wxss`, `.json`)合并。 例如,将 `index.wxml` 的模板转换为JSX语法,`index.js` 中的逻辑迁移到Taro的生命周期方法中,样式文件改为 `.scss` 或 `.css`。 - **配置迁移**: 将微信小程序的 `app.json` 中的全局配置(如页面路径、窗口样式)迁移到Taro项目的 `config/index.js` 中[^2]。 --- #### **3. 替换原生API** - Taro提供统的跨平台API,需将微原生API(如 `wx.request`)替换为 `Taro.request`。 例如: ```javascript // 微原生 wx.request({ url: &#39;...&#39; }); // Taro适配 Taro.request({ url: &#39;...&#39; }); ``` --- #### **4. 组件兼容性处理** - **自定义组件**: 若原小程序使用了自定义组件,需按Taro组件规范重构(如使用Props传递数据,事件绑定用 `onClick` 替代 `bindtap`)[^3]。 - **第三方组件库**: 推荐使用Taro官方UI库(如 `@tarojs/components`)或兼容Taro的第三方库。 --- #### **5. 多端编译与调试** - 通过修改 `package.json` 中的脚本命令,编译到不同平台: ```bash # 编译为微信小程序 taro build --type weapp # 编译为H5 taro build --type h5 # 编译为React Native(需额外配置) taro build --type rn ``` - 使用 `Taro.openApp` 等跨平台API处理端差异。 --- #### **6. 优化与测试** - **条件编译**: 使用 `process.env.TARO_ENV` 区分平台逻辑: ```javascript if (process.env.TARO_ENV === &#39;weapp&#39;) { // 微信小程序特定逻辑 } ``` - **性能优化**: 按Taro最佳实践调整代码结构,如减少不必要的渲染、使用Hooks管理状态。 --- ###
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

有一只柴犬

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值