Java最新Kubernetes任务调用Job与CronJob及源码分析,2024年最新Java面试精讲

总结

在这里,由于面试中MySQL问的比较多,因此也就在此以MySQL为例为大家总结分享。但是你要学习的往往不止这一点,还有一些主流框架的使用,Spring源码的学习,Mybatis源码的学习等等都是需要掌握的,我也把这些知识点都整理起来了

面试真题

Spring源码笔记

本文已被CODING开源项目:【一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码】收录

需要这份系统化的资料的朋友,可以点击这里获取

containers:

  • name: pi

image: perl

command: [“perl”, “-Mbignum=bpi”, “-wle”, “print bpi(2000)”]

restartPolicy: Never

backoffLimit: 4

这个Job会创建一个容器,然后执行命令进行π的计算,

然后我们创建这个pod:

$ kubectl create -f job.yaml

$ kubectl describe jobs/pi

Name: pi

Namespace: default

Selector: controller-uid=cf78ebe4-07f9-4234-b8f9-2fe92df352ea

Labels: controller-uid=cf78ebe4-07f9-4234-b8f9-2fe92df352ea

job-name=pi

Annotations: Parallelism: 1

Completions: 1

Pods Statuses: 0 Running / 1 Succeeded / 0 Failed

Pod Template:

Labels: controller-uid=cf78ebe4-07f9-4234-b8f9-2fe92df352ea

job-name=pi

Containers:

pi:

Image: resouer/ubuntu-bc

Events:

Type Reason Age From Message


Normal SuccessfulCreate 29m job-controller Created pod: pi-g9fs4

Normal Completed 27m job-controller Job completed

可以看到创建对象后,Pod模板中,被自动加上了一个controller-uid=< 一个随机字符串 > 这样的 Label。而这个 Job 对象本身,则被自动加上了这个 Label 对应的 Selector,从而 保证了 Job 与它所管理的 Pod 之间的匹配关系。这个uid避免了不同Job对象的Pod不会重合。

$ kubectl get pod

NAME READY STATUS RESTARTS AGE

pi-g9fs4 0/1 Completed 0 33m

$ kubectl describe pod pi-g9fs4

Events:

Type Reason Age From Message


Normal Scheduled 35m default-scheduler Successfully assigned default/pi-g9fs4 to 192.168.13.130

Normal Pulling 35m kubelet, 192.168.13.130 Pulling image “resouer/ubuntu-bc”

Normal Pulled 35m kubelet, 192.168.13.130 Successfully pulled image “resouer/ubuntu-bc”

Normal Created 35m kubelet, 192.168.13.130 Created container pi

Normal Started 35m kubelet, 192.168.13.130 Started container pi

我们可以看到Pod在创建好运行完毕之后会进入到Completed状态。上面的yaml定义中restartPolicy=Never也保证了这个Pod只会运行一次。

如果创建的Pod运行失败了,那么Job Controller会不断创建一个新的Pod:

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

pi-55h89 0/1 ContainerCreating 0 2s

pi-tqbcz 0/1 Error 0 5s

参数说明

spec.backoffLimit

我们在上面的字段中定义了为4,表示重试次数为4。

restartPolicy

在运行过程中,可能发生各种系统问题导致的Pod运行失败,如果设置restartPolicy为OnFailure,那么在运行中发生的失败后Job Controller会重启Pod里面的容器,而不是创建新的Pod。

还可以设置为Never,表示容器运行失败之后不会重启。

spec.activeDeadlineSeconds

表示最长运行时间,单位是秒。如:

spec:

backoffLimit: 5

activeDeadlineSeconds: 100

这样设置之后会进入pastActiveDeadline进行校验job.Spec.ActiveDeadlineSeconds是不是为空,不是空的话,会比较Pod的运行时间duration是否大于job.Spec.ActiveDeadlineSeconds设置的值,如果大于,那么会标记Pod终止的原因是DeadlineExceeded。

在job Controller的源码中,我们可以看到这部分的逻辑:

job Controller首先会去校验任务是不是处理次数是不是超过了BackoffLimit设置,如果没有超过的话就校验有没有设置ActiveDeadlineSeconds,如果设置了的话,就校验当前job运行时间是否超过了ActiveDeadlineSeconds设置的的时间,超过了那么会打上标记,表示这个job运行失败。

jobHaveNewFailure := failed > job.Status.Failed

exceedsBackoffLimit := jobHaveNewFailure && (active != *job.Spec.Parallelism) &&

(int32(previousRetry)+1 > *job.Spec.BackoffLimit)

if exceedsBackoffLimit || pastBackoffLimitOnFailure(&job, pods) {

// check if the number of pod restart exceeds backoff (for restart OnFailure only)

// OR if the number of failed jobs increased since the last syncJob

jobFailed = true

failureReason = “BackoffLimitExceeded”

failureMessage = “Job has reached the specified backoff limit”

} else if pastActiveDeadline(&job) {

jobFailed = true

failureReason = “DeadlineExceeded”

failureMessage = “Job was active longer than specified deadline”

}

func pastActiveDeadline(job *batch.Job) bool {

if job.Spec.ActiveDeadlineSeconds == nil || job.Status.StartTime == nil {

return false

}

now := metav1.Now()

start := job.Status.StartTime.Time

duration := now.Time.Sub(start)

allowedDuration := time.Duration(*job.Spec.ActiveDeadlineSeconds) * time.Second

return duration >= allowedDuration

}

Job的并行任务

在 Job 对象中,负责并行控制的参数有两个:

  1. spec.parallelism表示一个 Job 在任意时间最多可以启动多少个 Pod 同时运行;

  2. spec.completions表示Job 的最小完成数。

举例:

apiVersion: batch/v1

kind: Job

metadata:

name: pi

spec:

parallelism: 2

completions: 4

template:

spec:

containers:

  • name: pi

image: perl

command: [“perl”, “-Mbignum=bpi”, “-wle”, “print bpi(2000)”]

restartPolicy: Never

backoffLimit: 4

在创建任务之后,我们可以看到最多只会有两个Pod同时运行:

$ kubectl get pod

NAME READY STATUS RESTARTS AGE

pi-8fsrn 0/1 ContainerCreating 0 30s

pi-job-67kwg 0/1 Completed 0 14h

pi-wlbm5 0/1 ContainerCreating 0 30s

每当有一个 Pod 完成计算进入 Completed 状态时,就会有一个新的 Pod 被自动创建出来,并且快速地从 Pending 状态进入到 ContainerCreating 状态。

最终我们可以看到job的COMPLETIONS会标记全部完成:

$ kubectl get job

NAME COMPLETIONS DURATION AGE

pi 4/4 2m52s 2m52s

Job Controller中会会根据配置的并发数来确认当前处于 active 的 pods 数量是否合理,如果不合理的话则进行调整。

如果处于 active 状态的 pods 数大于 job 设置的并发数 job.Spec.Parallelism,则并发删除多余的 active pods。

Job源码分析

通过上面的使用例子,我们可以看到job的使用时非常的简单的,下面我们通过源码来理解一下这job的运行逻辑。

核心源码位置在job_controller.go中Controller类的syncJob方法中:

syncJob方法很长,我还是想要将这个方法拆开来进行说明。

Controller#syncJob

func (jm *Controller) syncJob(key string) (bool, error) {

job := *sharedJob

// if job was finished previously, we don’t want to redo the termination

// 如果job已经跑完了,那么直接返回,避免重跑

if IsJobFinished(&job) {

return true, nil

}

// retrieve the previous number of retry

// 获取job的重试次数

previousRetry := jm.queue.NumRequeues(key)

jobNeedsSync := jm.expectations.SatisfiedExpectations(key)

//获取这个job的pod列表

pods, err := jm.getPodsForJob(&job)

if err != nil {

return false, err

}

//找到这个job中仍然活跃的pod

activePods := controller.FilterActivePods(pods)

active := int32(len(activePods))

//获取job中运行成功的pod数和运行失败的pod数

succeeded, failed := getStatus(pods)

conditions := len(job.Status.Conditions)

// job first start

//设置job 的启动时间

if job.Status.StartTime == nil {

now := metav1.Now()

job.Status.StartTime = &now

// enqueue a sync to check if job past ActiveDeadlineSeconds

if job.Spec.ActiveDeadlineSeconds != nil {

klog.V(4).Infof(“Job %s has ActiveDeadlineSeconds will sync after %d seconds”,

key, *job.Spec.ActiveDeadlineSeconds)

jm.queue.AddAfter(key, time.Duration(*job.Spec.ActiveDeadlineSeconds)*time.Second)

}

}

}

这部分的代码会校验job是否已经跑完了,如果跑完了直接返回;

然后获取job的重试次数,以及与job关联的pod列表,并计算出活跃的pod数量、运行成功的pod数量、以及失败的pod数量;

接下来如果job是首次启动,那么需要设置job的启动时间。

继续:

func (jm *Controller) syncJob(key string) (bool, error) {

var manageJobErr error

jobFailed := false

var failureReason string

var failureMessage string

//failed次数超过了job.Status.Failed说明有新的pod运行失败了

jobHaveNewFailure := failed > job.Status.Failed

// new failures happen when status does not reflect the failures and active

// is different than parallelism, otherwise the previous controller loop

// failed updating status so even if we pick up failure it is not a new one

//如果有新的pod运行失败,并且活跃的pod不等于并行Parallelism数

//并且重试次数超过了BackoffLimit

exceedsBackoffLimit := jobHaveNewFailure && (active != *job.Spec.Parallelism) &&

(int32(previousRetry)+1 > *job.Spec.BackoffLimit)

//重试次数是否超标

if exceedsBackoffLimit || pastBackoffLimitOnFailure(&job, pods) {

// check if the number of pod restart exceeds backoff (for restart OnFailure only)

// OR if the number of failed jobs increased since the last syncJob

jobFailed = true

failureReason = “BackoffLimitExceeded”

failureMessage = “Job has reached the specified backoff limit”

// job运行时间是否超过了ActiveDeadlineSeconds

} else if pastActiveDeadline(&job) {

jobFailed = true

failureReason = “DeadlineExceeded”

failureMessage = “Job was active longer than specified deadline”

}

}

这段代码是用来判断job是否运行失败,判断依据是job重试次数是否超过了BackoffLimit,以及job的运行时间是否超过了设置的ActiveDeadlineSeconds。

上面这里会获取上一次运行的Failed次数和这次的job的failed次数进行比较,如果failed多了表示又产生了新的运行失败的pod。如果运行失败会标识出失败原因,以及设置jobFailed为true。

在上面的代码中调用了pastBackoffLimitOnFailure方法和pastActiveDeadline方法,我们分别看一下:

pastBackoffLimitOnFailure

func pastBackoffLimitOnFailure(job *batch.Job, pods []*v1.Pod) bool {

//如果RestartPolicy为OnFailure,那么直接返回

if job.Spec.Template.Spec.RestartPolicy != v1.RestartPolicyOnFailure {

return false

}

result := int32(0)

for i := range pods {

po := pods[i]

//如果pod状态为Running或Pending

//获取到pod对应的重启次数以及Container状态,包含pod中的InitContainer

if po.Status.Phase == v1.PodRunning || po.Status.Phase == v1.PodPending {

for j := range po.Status.InitContainerStatuses {

stat := po.Status.InitContainerStatuses[j]

result += stat.RestartCount

}

for j := range po.Status.ContainerStatuses {

stat := po.Status.ContainerStatuses[j]

result += stat.RestartCount

}

}

}

//如果BackoffLimit等于,那么只要重启了一次,则返回true

if *job.Spec.BackoffLimit == 0 {

return result > 0

}

//比较重启次数是否超过了BackoffLimit

return result >= *job.Spec.BackoffLimit

}

这个方法会校验job的RestartPolicy策略,不是OnFailure才继续往下执行。然后会遍历pod列表,将pod列表中的重启次数累加并与BackoffLimit进行比较,超过了则返回true。

pastActiveDeadline

func pastActiveDeadline(job *batch.Job) bool {

if job.Spec.ActiveDeadlineSeconds == nil || job.Status.StartTime == nil {

return false

}

now := metav1.Now()

start := job.Status.StartTime.Time

duration := now.Time.Sub(start)

allowedDuration := time.Duration(*job.Spec.ActiveDeadlineSeconds) * time.Second

return duration >= allowedDuration

}

这个方法会算出job的运行时间duration,然后和ActiveDeadlineSeconds进行比较,如果超过了则返回true。

我们回到syncJob中继续往下:

func (jm *Controller) syncJob(key string) (bool, error) {

//job运行失败

if jobFailed {

errCh := make(chan error, active)

//将job里面的active的pod删除

jm.deleteJobPods(&job, activePods, errCh)

select {

case manageJobErr = <-errCh:

if manageJobErr != nil {

break

}

default:

}

// update status values accordingly

//清空active数

failed += active

active = 0

job.Status.Conditions = append(job.Status.Conditions, newCondition(batch.JobFailed, failureReason, failureMessage))

jm.recorder.Event(&job, v1.EventTypeWarning, failureReason, failureMessage)

} else {

//如果job需要同步,并且job没有被删除,则调用manageJob进行同步工作

if jobNeedsSync && job.DeletionTimestamp == nil {

active, manageJobErr = jm.manageJob(activePods, succeeded, &job)

}

//完成数等于pod 运行成功的数量

completions := succeeded

complete := false

//如果没有设置Completions,那么只要有pod完成,那么job就算完成

if job.Spec.Completions == nil {

if succeeded > 0 && active == 0 {

complete = true

}

} else {

//如果实际完成数大于或等于Completions

if completions >= *job.Spec.Completions {

complete = true

//如果还有pod处于active状态,发送EventTypeWarning事件

if active > 0 {

jm.recorder.Event(&job, v1.EventTypeWarning, “TooManyActivePods”, “Too many active pods running after completion count reached”)

}

//如果实际完成数大于Completions,发送EventTypeWarning事件

if completions > *job.Spec.Completions {

jm.recorder.Event(&job, v1.EventTypeWarning, “TooManySucceededPods”, “Too many succeeded pods running after completion count reached”)

}

}

}

//job完成了则更新 job.Status.Conditions 和 job.Status.CompletionTime 字段

if complete {

job.Status.Conditions = append(job.Status.Conditions, newCondition(batch.JobComplete, “”, “”))

now := metav1.Now()

job.Status.CompletionTime = &now

jm.recorder.Event(&job, v1.EventTypeNormal, “Completed”, “Job completed”)

}

}

}

这一段中会根据jobFailed的状态进行判断。

如果jobFailed为true则表示这个job运行失败,需要删除这个job关联的所有pod,并且清空active数。

如果jobFailed为false则表示这个job处于非false状态。如果job需要同步,并且job没有被删除,则调用manageJob进行同步工作;

接下来会对设置的Completions进行处理,如果Completions没有设置,那么只要有一个pod运行完毕,那么这个pod就算完成;

如果实际完成的pod数量大于completions或仍然有pod处于active中,则发送相应的事件信息。最后更新job的状态为完成。

我们接下来一口气看看manageJob中这个同步方法里面做了什么,这个方法是job管理pod运行数量的核心方法:

Controller#manageJob

func (jm *Controller) manageJob(activePods []*v1.Pod, succeeded int32, job *batch.Job) (int32, error) {

//如果处于 active 状态的 pods 数大于 job 设置的并发数 job.Spec.Parallelism

if active > parallelism {

//多出的个数

diff := active - parallelism

errCh = make(chan error, diff)

jm.expectations.ExpectDeletions(jobKey, int(diff))

klog.V(4).Infof(“Too many pods running job %q, need %d, deleting %d”, jobKey, parallelism, diff)

//pods 排序,以便可以优先删除一些pod:

// 判断 pod 状态:Not ready < ready

// 是否已经被调度:unscheduled< scheduled

//判断 pod phase :pending < running

sort.Sort(controller.ActivePods(activePods))

active -= diff

wait := sync.WaitGroup{}

wait.Add(int(diff))

for i := int32(0); i < diff; i++ {

//并发删除多余的 active pods

go func(ix int32) {

defer wait.Done()

if err := jm.podControl.DeletePod(job.Namespace, activePods[ix].Name, job); err != nil {

// Decrement the expected number of deletes because the informer won’t observe this deletion

jm.expectations.DeletionObserved(jobKey)

if !apierrors.IsNotFound(err) {

klog.V(2).Infof(“Failed to delete %v, decremented expectations for job %q/%q”, activePods[ix].Name, job.Namespace, job.Name)

activeLock.Lock()

active++

activeLock.Unlock()

errCh <- err

utilruntime.HandleError(err)

}

}

}(i)

}

wait.Wait()

//若处于 active 状态的 pods 数小于 job 设置的并发数,则需要创建出新的 pod

} else if active < parallelism {

wantActive := int32(0)

//如果没有声明Completions,那么active的pod应该等于parallelism,如果有pod已经完成了,那么不再创建新的。

if job.Spec.Completions == nil {

if succeeded > 0 {

wantActive = active

} else {

wantActive = parallelism

}

// 如果声明了Completions,那么需要比较Completions和succeeded

// 如果wantActive大于parallelism,那么需要创建的Pod数等于parallelism

} else {

// Job specifies a specific number of completions. Therefore, number

// active should not ever exceed number of remaining completions.

wantActive = *job.Spec.Completions - succeeded

if wantActive > parallelism {

wantActive = parallelism

}

}

//计算出 diff 数

diff := wantActive - active

if diff < 0 {

utilruntime.HandleError(fmt.Errorf(“More active than wanted: job %q, want %d, have %d”, jobKey, wantActive, active))

diff = 0

}

//表示已经有足够的pod,不需要再创建了

if diff == 0 {

return active, nil

}

jm.expectations.ExpectCreations(jobKey, int(diff))

errCh = make(chan error, diff)

klog.V(4).Infof(“Too few pods running job %q, need %d, creating %d”, jobKey, wantActive, diff)

active += diff

wait := sync.WaitGroup{}

面试准备+复习分享:

为了应付面试也刷了很多的面试题与资料,现在就分享给有需要的读者朋友,资料我只截取出来一部分哦

秋招|美团java一面二面HR面面经,分享攒攒人品

本文已被CODING开源项目:【一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码】收录

需要这份系统化的资料的朋友,可以点击这里获取

should not ever exceed number of remaining completions.

wantActive = *job.Spec.Completions - succeeded

if wantActive > parallelism {

wantActive = parallelism

}

}

//计算出 diff 数

diff := wantActive - active

if diff < 0 {

utilruntime.HandleError(fmt.Errorf(“More active than wanted: job %q, want %d, have %d”, jobKey, wantActive, active))

diff = 0

}

//表示已经有足够的pod,不需要再创建了

if diff == 0 {

return active, nil

}

jm.expectations.ExpectCreations(jobKey, int(diff))

errCh = make(chan error, diff)

klog.V(4).Infof(“Too few pods running job %q, need %d, creating %d”, jobKey, wantActive, diff)

active += diff

wait := sync.WaitGroup{}

面试准备+复习分享:

为了应付面试也刷了很多的面试题与资料,现在就分享给有需要的读者朋友,资料我只截取出来一部分哦

[外链图片转存中…(img-iXFlXxyM-1715407025070)]

本文已被CODING开源项目:【一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码】收录

需要这份系统化的资料的朋友,可以点击这里获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值