OpenCV学习分享
1、OpenCV简介
OpenCV于1999年由Gary Bradsky在英特尔创立,第一个版本于2000年问世。
Opencv(Open Source Computer Vision Library)是一个基于开源发行的跨平台计算机视觉库,它实现了图像处理和计算机视觉方面的很多通用算法,已成为计算机视觉领域最有力的研究工具。
Opencv由一系列C函数和少量C++类构成,也有提供其他语言的接口,例如支持python、matlab等语言;
1.1、概念区分
- 图像处理侧重于“处理”图像–如增强,还原,去噪,分割等等
- 计算机视觉重点在于使用计算机来模拟人的视觉,因此模拟才是计算机视觉领域的最终目标。
1.2、应用领域
包括在卫星和网络地图上拼接图像,图像扫描校准,医学图像的降噪,目标分析,安保以及工业检测系统,自动驾驶和安全系统,制造感知系统,相机校正,军事应用,无人空中、地面、水下航行器。
1.3、OpenCV结构
OpenCV是一个具有19个模块作为代码容器组合起来的一个sdk。
2、图像
在计算机看来,图像只是一些亮度各异的点,一副MN的图片可以用MN的矩阵来表示,矩阵的值表示这个位置上像素的亮度,他可以被表示为多种模式。
- 位图模式
- 灰度模式
- RGB模式
图像存储示意图
2.1、图像模式
2.1.1、位图模式
位图模式是1位二进制深度的图像。它只是黑和白两种颜色。它可以由扫描或置入黑色的矢量线条图像生成,也能由灰度模式转换而成。其他图像模式不能直接转换为位图模式。
位图存储示意图
2.1.2、灰度模式
灰度模式是8位二进制深度的图像模式,在全黑和全白之间插有254个(2^8)灰度等级的颜色来描绘灰度模式的图像,所有模式的图像都能换成灰度模式。
位图存储示意图
2.1.3、RGB模式
RGB模式是数码图像中最重要的一个模式,它不是用数码而是用电平来描述的。扫描仪和数码相机都是捕捉RGB图像信息的。RGB模式是24位颜色深度。它共有三个通道,每个通道都有8位深度。三个通道合成一起可生成1677万种颜色,我们也称之谓“真彩色”。
位图存储示意图
2.2、图像操作
2.2.1、读图像
2.2.2、显示图片
2.2.1、保存图片
#include <opencv2/opencv.hpp>
int main()
{
// 读取图像
cv::Mat img = cv::imread("input.jpg");
// 保存图像
cv::imwrite("output.jpg", img);
// 保存图像并设置压缩质量
std::vector<int> params;
params.push_back(cv::IMWRITE_JPEG_QUALITY);
params.push_back(50);
cv::imwrite("output_compressed.jpg", img, params);
return 0;
}
3、Mat类
Mat类 (Matrix的缩写) 是OpenCV用于处理图像而引入的一个封装类。他是一个自动内存管理工具。
Mat:本质上是由两个数据部分组成的类:(包含信息有矩阵的大小,用于存储的方法,矩阵存储的地址等) 矩阵头和一个指针,指向包含了像素值的矩阵(可根据选择用于存储的方法采用任何维度存储数据)。矩阵头部的大小是恒定的。然而,矩阵本身的大小因图像的不同而不同,通常是较大的数量级图像矩阵比较耗时
Mat(int rows, int cols, int type, const Scalar& s);
参数介绍:
rows:行
cols:列
type:类型 CV_[位数][带符号与否][类型前缀]C[通道数]
s:用于初始化Mat行列的数据 一般为数组。
Mat m1(2, 2, CV_8UC3, Scalar(0, 0, 255));
4、图片
4.1、像素
像素:是指由图像的小方格组成的,这些小方格都有一个明确的位置和被分配的色彩数值,小方格颜色和位置就决定该图像所呈现出来的样子;像素点不可再分割成更小的单位或元素。
一张图片就是由很多个像素点组成的,如果图片大小为25*25,那么这张图片就是由625个像素点组成,一行有25个像素点,一共25列。
一张图片所有的像素点存在MAT矩阵中,MAT(i,j)的值就是当前像素点的值。
灰度图–单通道
彩色图–3通道
4.2、像素的操作
#include<opencv2/opencv.hpp>
#include<opencv2/highgui/highgui.hpp>
using namespace std;
using namespace cv;
int main()//访问每个像素,使用指针的方式
{
Mat img = imread("lol1.jpg");
for (int i =