CV-扩散模型经典论文解读|SVGDreamer: Text Guided SVG Generation with Diffusion Model

论文标题

SVGDreamer: Text Guided SVG Generation with Diffusion Model

SVGDreamer:基于扩散模型的文本引导 SVG 生成

论文链接

SVGDreamer: Text Guided SVG Generation with Diffusion Model论文下载

论文作者

Ximing Xing, Haitao Zhou, Chuang Wang, Jing Zhang, Dong Xu, Qian Yu

内容简介

本文提出了一种名为SVGDreamer的新型文本引导的可缩放矢量图形(SVG)生成方法。该方法通过结合语义驱动的图像矢量化(SIVE)过程和矢量化粒子分数蒸馏(VPSD)技术,解决了现有文本到SVG生成方法在可编辑性、视觉质量和结果多样性方面的不足。SVGDreamer能够生成具有高可编辑性、优越视觉质量和丰富多样性的SVG图形,适用于图标、草图等多种视觉设计领域。

关键点

1.语义驱动的图像矢量化(SIVE)

通过引入基于注意力机制的原素控制策略,将合成过程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值