论文标题
SVGDreamer: Text Guided SVG Generation with Diffusion Model
SVGDreamer:基于扩散模型的文本引导 SVG 生成
论文链接
SVGDreamer: Text Guided SVG Generation with Diffusion Model论文下载
论文作者
Ximing Xing, Haitao Zhou, Chuang Wang, Jing Zhang, Dong Xu, Qian Yu
内容简介
本文提出了一种名为SVGDreamer的新型文本引导的可缩放矢量图形(SVG)生成方法。该方法通过结合语义驱动的图像矢量化(SIVE)过程和矢量化粒子分数蒸馏(VPSD)技术,解决了现有文本到SVG生成方法在可编辑性、视觉质量和结果多样性方面的不足。SVGDreamer能够生成具有高可编辑性、优越视觉质量和丰富多样性的SVG图形,适用于图标、草图等多种视觉设计领域。
关键点
1.语义驱动的图像矢量化(SIVE):
通过引入基于注意力机制的原素控制策略,将合成过程