论文标题
Gramformer: Learning Crowd Counting via Graph-Modulated Transformer
Gramformer:基于图调制Transformer的群体计数学习
论文链接
Gramformer: Learning Crowd Counting via Graph-Modulated Transformer论文下载
论文作者
Hui Lin, Zhiheng Ma, Xiaopeng Hong, Qinnan Shangguan, Deyu Meng
内容简介
本文提出了一种名为Gramformer的图调制Transformer,用于解决人群计数问题。传统的卷积神经网络(CNN)在处理人群图像时,由于图像中存在大量相似的区域,往往会导致生成的注意力图高度同质化,无法有效捕捉到不同区域的特征。Gramformer通过引入两种图结构——注意力图和基于特征的中心性编码图,来调节Transformer的注意力机制和输入节点特征。注意力图通过编码补丁之间的差异性来多样化注意力图,而中心性编码则用于识别节点的重要性。通过在四个具有挑战性的人群计数数据集上进行的广泛实验,验证了所提方法的有效性和竞争力。
分点关键点
-
Gramformer框架
- Gramformer通过引入图调制机制,利用注意力图和中心性编码图来增强Transformer的性能。注意力图通过反相似性调节注意力,使得模型能够关注互补信息,从而生成多样化的注意力图。
- Gramformer通过引入图调制机制,利用注意力图和中心性编码图来增强Transformer的性能。注意力图通过反相似性调节注意力,使得模型能够关注互补信息,从而生成多样化的注意力图。
-
注意力图的构建
- 采用边缘权重回归(EWR)网络构建注意力图,EWR根据补丁之间的语义差异性来确定边的权重。通过引入边缘正则化项,限制同一水平线上的差异性,从而减少同质化现象。
- 采用边缘权重回归(EWR)网络构建注意力图,EWR根据补丁之间的语义差异性来确定边的权重。通过引入边缘正则化项,限制同一水平线上的差异性,从而减少同质化现象。
-
中心性编码的实现
- 通过构建基于特征的邻接图,识别节点的中心性。节点的出现频率被视为中心性指标,利用可学习的中心性嵌入向量来调节节点特征,增强自注意力关系。
-
实验验证
- 在多个人群计数数据集上进行的实验表明,Gramformer在计数性能上优于传统方法,能够有效处理人群图像中的复杂性和多样性。
- 在多个人群计数数据集上进行的实验表明,Gramformer在计数性能上优于传统方法,能够有效处理人群图像中的复杂性和多样性。
论文代码
代码链接:https://github.com/LoraLinH/Gramformer
中文关键词
- 群体计数
- 图调制Transformer
- 注意力机制
- 中心性编码
- 边缘权重回归
- 自注意力
AAAI论文合集:
希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!