论文标题
DeepAccident: A Motion and Accident Prediction Benchmark for V2X Autonomous Driving
DeepAccident: 用于 V2X 自动驾驶的运动和事故预测基准
论文链接
DeepAccident: A Motion and Accident Prediction Benchmark for V2X Autonomous Driving论文下载
论文作者
Tianqi Wang, Sukmin Kim, Ji Wenxuan, Enze Xie, Chongjian Ge, Junsong Chen, Zhenguo Li, Ping Luo
内容简介
本文提出了DeepAccident,一个用于V2X(车联网)自动驾驶的运动和事故预测基准数据集。该数据集通过逼真的模拟器生成,包含多种在现实世界中常见的事故场景,旨在填补现有数据集中对安全关键场景的缺失。DeepAccident数据集包括57K个标注帧和285K个标注样本,规模约为现有大型nuScenes数据集的7倍。此外,本文还提出了一项新的任务——端到端运动和事故预测,能够直接评估不同自动驾驶算法的事故预测能力。为此,研究团队设计了一种名为V2XFormer的基线V2X模型,在运动和事故预测及3D目标检测方面表现优于单车模型。该研究为V2X感知和预测任务提供了重要的基准和数据支持。
分点关键点
-
DeepAccident数据集
- DeepAccident是第一个支持端到端运动和事故预测的V2X自动驾驶数据集,包含285K个标注样本和57K个标注V2X帧。数据集通过模拟器生成,涵盖多种事故场景,填补了现有数据集中对安全关键场景的缺失。
-
端到端运动和事故预测任务
- 本文提出的端到端运动和事故预测任务旨在预测碰撞事故的发生、时间、地点及涉及的车辆或行人。该任务为评估不同自动驾驶算法的事故预测能力提供了新的标准。
-
V2XFormer模型
- V2XFormer是一种新提出的V2X模型,利用多视角摄像头和LiDAR数据进行感知和预测任务。与单车模型相比,V2XFormer在运动和事故预测及3D目标检测方面表现出色,成为后续研究的基线。
-
数据集生成与多样性
- DeepAccident数据集的生成基于NHTSA的碰撞前报告,设计了12种在交叉路口发生的事故场景。数据收集过程中引入了多种随机因素,以增强场景的多样性和真实感。
-
实验与评估
- 研究团队在DeepAccident的验证集上进行了多项实验,比较了不同V2X融合模块的性能,并评估了V2X模型与单车模型在运动预测和事故预测任务中的表现。
- 研究团队在DeepAccident的验证集上进行了多项实验,比较了不同V2X融合模块的性能,并评估了V2X模型与单车模型在运动预测和事故预测任务中的表现。
论文代码
代码链接:https://github.com/DeepAccident
中文关键词
- V2X自动驾驶
- 运动预测
- 事故预测
- 数据集
- 深度学习
- 感知任务
AAAI论文合集:
希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!