论文标题
HARDVS: Revisiting Human Activity Recognition with Dynamic Vision Sensors 动态视觉传感器的人类活动识别重温
论文链接
HARDVS: Revisiting Human Activity Recognition with Dynamic Vision Sensors论文下载
论文作者
Xiao Wang, Zongzhen Wu, Bo Jiang, Zhimin Bao, Lin Zhu, Guoqi Li, Yaowei Wang, Yonghong Tian
内容简介
本文提出了一个新的大规模基准数据集HARDVS,旨在解决基于事件的动态视觉传感器(DVS)的人类活动识别(HAR)领域中缺乏真实数据集的问题。HARDVS数据集包含超过10万个事件序列,涵盖300个日常活动类别,充分反映了现实世界中的挑战因素,如多视角、光照变化、运动速度和动态背景等。为了有效利用该数据集,本文还提出了一种新颖的时空特征学习和融合框架(ESTF),该框架通过Transformer网络对事件流进行空间和时间特征的学习与融合。实验结果表明,HARDVS数据集和ESTF框架在HAR任务中具有显著的有效性,为未来的研究提供了广泛的基线。
分点关键点1. HARDVS数据集
- HARDVS是第一个真实的大规模HAR基准数据集,包含超过10万个视频片段,涵盖300个类别,能够反映现实世界中的多种挑战因素。数据集的多样性体现在不同的捕获距离、光照条件和运动速度等方面,适合深度学习模型的训练和评估。
-
ESTF框架
- ESTF(基于事件的时空Transformer)框架通过将事件流转换为空间和时间嵌入,利用Transformer网络进行特征学习和融合。该框架包括初始嵌入、空间和时间增强学习模块,以及融合Transformer模块,能够有效捕捉事件数据的空间相关性和时间依赖性。
-
性能评估
- 本文对多种流行的HAR算法在HARDVS数据集上的性能进行了评估,提供了广泛的基线供未来研究进行比较。实验结果验证了HARDVS数据集和ESTF框架在动态视觉传感器下进行人类活动识别的有效性。
-
未来研究方向
- HARDVS数据集的发布为基于事件的HAR研究提供了新的平台,未来的研究可以在此基础上探索更多的算法和应用场景,推动该领域的发展。
- HARDVS数据集的发布为基于事件的HAR研究提供了新的平台,未来的研究可以在此基础上探索更多的算法和应用场景,推动该领域的发展。
论文代码
代码链接:https://github.com/EventAHU/HARDVS
中文关键词
- 人类活动识别
- 动态视觉传感器
- HARDVS数据集
- 时空特征学习
- Transformer网络
- 事件流
AAAI论文合集:
希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!