2019 GDUT 新生专题Ⅳ选集 B题 Fedya and Maths

该博客探讨了一道数学问题,即求(1^n + 2^n + 3^n + 4^n) mod 5的值,当n可达到10的105次方。博主通过观察指出,对于如此大的n,常规方法不可行,而是通过找寻个位数的规律来简化问题。分析表明,个位数的变化周期为4,从而可以通过n mod 4的值快速得出结果。文章最后可能给出了实现这一方法的代码。
摘要由CSDN通过智能技术生成

B - Fedya and Maths

链接

题目描述
求(1n + 2n + 3n + 4n) mod 5的值,n最大可以达到10的105次方。

题目分析

n为这么大的数字,显然不能用常规方法,猜想有规律可循。一个数 mod5 等于多少只需看个位是多少 (证明:(10*(前n-1位数)+(个位))%5=(个位)%4)。

由此可猜想 1n + 2n + 3n + 4n 的个位是有规律的。代入几组数据可以发现:除去n=0的情况,它们的个位变化周期为4。因此只用判断n mod 4 值为多少,而判断一个数 mod 4 等于多少只需看个位与十位(证明:(100*(前n-2位数)+(后两位))%4=(后两位)%4),即可得出答案。

代码

#include <cstdio>
using namespace std;

int answer(int n)
{
	switch(n){
		case 0://(1+1+1+1)%5
		case 4://(1+6+1+6)%5;
			return 4;
		case 1://(1+2+3+4)%5;
		case 2://(1+4+9+6)%5;
		case 3://(1+8+7+4)%5;
			return 0;
	}
}
int main()
{
	char a[2]={0},ch;
	while(scanf("%c",&ch)){
		if(ch=='\n') break;
		a[0]=a[1];
		a[1]=ch;
	}
	int temp=10*(a[0]-'0')+(a[1]-'0'),ans=answer(temp%4);
	printf("%d\n",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值