格基规约算法:二维情形与LLL算法解析
研究概述
在格基规约算法的研究中,将动力学分析方法应用于LLL算法是一次重要尝试。LLL算法可视为一个整体的动力学系统,它并行运行多个二维动力学系统,并整合这些小系统的动力学特性。这使得我们有可能利用高斯算法在概率和动力学方面的精确结果,来描述LLL算法的概率行为和整体动力学。
二维情形下的格基规约算法
- 格的基本概念 :维度为 $p$ 的格 $L \subseteq \mathbb{R}^n$ 是 $\mathbb{R}^n$ 的离散加法子群,由一组 $p$ 个线性无关向量 $B = (b_1, b_2, \cdots, b_p)$ 的整数线性组合生成,这组向量称为格 $L$ 的基。一个格可以由无穷多个通过行列式为 $\pm1$ 的整数矩阵相互关联的基生成。格基规约算法的目标是为给定的欧几里得格找到一个“约化”基,这个基由几乎正交且足够短的向量组成。
- 二维格的特性 :在二维情况下,不失一般性,二维格可以被视为 $\mathbb{R}^2$ 的子集。我们使用复数来表示二维向量,对于复数 $z \in \mathbb{C}$,$|z|$ 既表示复数的模,也表示向量的欧几里得范数;对于两个复数 $u, v$,$(u \cdot v)$ 表示它们对应向量的标量积。二维格在复平面 $\mathbb{C}$ 中可表示为 $L = \mathbb{Z}u \oplus \mathbb{Z}v = {au + bv | a, b \in \mathbb{Z}}$,其中 $(u, v)$ 是一对 $\mathbb{R}$ - 线性无关的复数。
超级会员免费看
订阅专栏 解锁全文
1万+

被折叠的 条评论
为什么被折叠?



