PySpark数据处理:从基础操作到数据连接
1. 数据操作基础
在数据处理中,对数据框进行列的选择、删除、重命名、排序和诊断是非常常见且有用的操作。这些操作有助于我们更好地管理数据框的列数,使数据更易于处理和分析。
1.1 创建列
在PySpark中,我们可以使用 select() 和 withColumn() 方法来创建列。
- select() :当你明确要处理少数几列时, select() 方法非常有用。
- withColumn() :当你需要创建一些新列而不改变数据框的其他部分时,我更倾向于使用 withColumn() 方法。不过需要注意的是,如果使用 withColumn() 方法创建大量(100个以上)新列,会使Spark的处理速度显著变慢。此时,建议使用 select() 方法,因为它对查询规划器的负担较小。
1.2 重命名和重新排序列
重命名和重新排序列可以使数据框的列名和顺序更友好,便于后续的数据分析。
- 重命名列 :可以使用 select() 和 alias() 方法来重命名列,但PySpark提供了更简单的 withColumnRenamed() 方法。例如,将 Duration_seconds <
超级会员免费看
订阅专栏 解锁全文
1118

被折叠的 条评论
为什么被折叠?



