形式幂级数与矩阵的深入探究
形式幂级数的基础概念
形式幂级数是一种重要的数学对象。设 Σ 为字母表,S 为半环,从 Σ∗ 到 S 的映射 r 被称为形式幂级数。其值记为 (r, w),其中 w ∈ Σ∗,r 可写为形式和 (r = \sum_{w\in\Sigma^*}(r, w)w),(r, w) 也被称为级数的系数。所有这样的形式幂级数的集合记为 S⟨⟨Σ∗⟩⟩。
若 r 的每个系数都为 0 或 1,则 r 称为其支撑集 L 的特征级数,记为 r = char(L) 或 r = 1L。支撑集有限的级数集合记为 S⟨Σ∗⟩,其中的级数被称为多项式。例如,0 和 aw(a ∈ S,w ∈ Σ∗)是多项式,定义如下:
- ((0, w) = 0),对所有 w。
- ((aw, w) = a)。
- ((aw, w’) = 0),当 (w \neq w’)。
常见的多项式表示中,1w 常记为 w 或 1{w}。
形式幂级数的运算
对 (r_1, r_2, r \in S⟨⟨Σ∗⟩⟩) 和 (a \in S),定义了以下运算:
| 运算类型 | 运算规则 |
| ---- | ---- |
| 和 | ((r_1 + r_2, w) = (r_1, w) + (r_2, w)) |
| (柯西)积 | ((r_1 \cdot r_2, w) = \sum_{w_1w_2=w}(r_1, w_1)(r_2, w_2)) |
| 哈达玛积 | ((r_1 \odot r_2, w) = (r_1, w)(r_2, w)) |
| 左数乘 | ((ar, w)
超级会员免费看
订阅专栏 解锁全文
7155

被折叠的 条评论
为什么被折叠?



