3、形式幂级数与矩阵的深入探究

形式幂级数与矩阵的深入探究

形式幂级数的基础概念

形式幂级数是一种重要的数学对象。设 Σ 为字母表,S 为半环,从 Σ∗ 到 S 的映射 r 被称为形式幂级数。其值记为 (r, w),其中 w ∈ Σ∗,r 可写为形式和 (r = \sum_{w\in\Sigma^*}(r, w)w),(r, w) 也被称为级数的系数。所有这样的形式幂级数的集合记为 S⟨⟨Σ∗⟩⟩。

若 r 的每个系数都为 0 或 1,则 r 称为其支撑集 L 的特征级数,记为 r = char(L) 或 r = 1L。支撑集有限的级数集合记为 S⟨Σ∗⟩,其中的级数被称为多项式。例如,0 和 aw(a ∈ S,w ∈ Σ∗)是多项式,定义如下:
- ((0, w) = 0),对所有 w。
- ((aw, w) = a)。
- ((aw, w’) = 0),当 (w \neq w’)。

常见的多项式表示中,1w 常记为 w 或 1{w}。

形式幂级数的运算

对 (r_1, r_2, r \in S⟨⟨Σ∗⟩⟩) 和 (a \in S),定义了以下运算:
| 运算类型 | 运算规则 |
| ---- | ---- |
| 和 | ((r_1 + r_2, w) = (r_1, w) + (r_2, w)) |
| (柯西)积 | ((r_1 \cdot r_2, w) = \sum_{w_1w_2=w}(r_1, w_1)(r_2, w_2)) |
| 哈达玛积 | ((r_1 \odot r_2, w) = (r_1, w)(r_2, w)) |
| 左数乘 | ((ar, w)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值