自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(92)
  • 资源 (50)
  • 收藏
  • 关注

原创 火到爆的扩散模型(Diffusion Model)帮你具象化幻想世界

Diffusion Model如果你对人工智能有所了解,想必已经听说过Diffusion Model了。如果还没有,那就一起来了解一下吧——扩散(Diffusion)对于人能智能而言,是一个借用的概念。在热力学中,它指细小颗粒从高密度区域扩散至低密度区域的过程。在统计学领域,这一术语则指将复杂的分布转换为简单分布的过程。Diffusion Model 定义了一个概率分布转换模型,它的前向传播过程,可以将一个复杂的分布转换为了一个标准正态分布。

2022-12-07 10:17:11 270 1

原创 Stable Diffusion模型阅读笔记

Stable Diffusion模型什么是Stable Diffusion模型一般而言,扩散是在图像中反复添加小且随机的噪声。与之相反,Stable Diffusion模型是一种将噪声生成为图像的机器学习模型。经过训练,它可逐步对随机高斯噪声进行去噪以获得感兴趣的样本,如无条件图片生成(unconditional image synthesis)、图片修复(inpainting)、图片超分(super-resolution)、类别条件图片生成(class-condition)、文图生成(text-to-

2022-12-07 10:15:49 261 1

原创 谷歌&北大扩散模型(Diffusion Model)首篇综述来了!

diffusion扩散模型详解

2022-12-07 10:13:44 202 1

原创 扩散模型(Diffusion)最新综述+GitHub论文汇总-A Survey On Generative Diffusion

diffusion模型详解

2022-12-07 10:12:30 195 1

原创 从大一统视角理解扩散模型(Diffusion Models)

diffusion模型

2022-12-07 10:11:16 4 1

原创 扩散模型Diffusion轻松入门

diffusion模型

2022-12-07 10:05:41 232 1

原创 脑电信号分类问题的数据预处理方法

脑电信号分类问题的数据预处理方法

2022-12-07 10:00:45 300 1

原创 eeglab脑电数据预处理:step by step

脑电数据处理

2022-12-06 23:21:07 17 1

原创 一个基于Python的脑电数据中文预处理手册发布!

一个基于Python的脑电数据中文预处理手册发布

2022-12-06 23:18:37 28 1

原创 世界杯日本队

这次还蛮期待日本队赢的,可惜还是不够老练

2022-12-06 22:53:53 31 1

转载 CT 三维重建主要六种基本处理方法

CT 三维重建主要六种基本处理方法

2022-12-06 16:42:56 2 1

转载 CT 三维重建主要六种基本处理方法

CT 三维重建主要六种基本处理方法

2022-12-06 16:42:08 10 1

原创 工业CT检测技术及工业CT基本组成

工业CT

2022-12-06 16:36:34 336 1

原创 工业CT之三维重建技术

工业CT

2022-12-06 16:28:26 351 1

原创 可以作为艺术作品欣赏的CT三维重建技术。

CT重建相关技术及展示

2022-12-06 16:21:36 448 1

原创 西门子CT重建算法

CT重建算法及其应用

2022-12-06 13:22:36 279 2

原创 研究 | CT图像迭代重建算法研究进展

CT重建算法相关研究及总结

2022-12-06 13:12:50 335 1

原创 清华推出“脑机绘梦”,把脑电信号变成绘画元素!雨果奖得主用了也说好

未来还可以通过神经反馈和艺术疗愈,让脑机绘梦在心理治疗上发挥更多的作用。

2022-08-31 18:30:40 99

原创 脑电植入:治疗抑郁症的新方法?重磅!UCSF研究人员成功治疗一例重度抑郁症患者

脑电植入:治疗抑郁症的新方法?重磅!UCSF研究人员成功治疗一例重度抑郁症患者

2022-08-31 18:28:10 279

原创 solidworks动画制作教程——装配体爆炸动画

solidworks超炫酷爆炸动画制作

2022-08-31 13:27:01 798

原创 solidworks动画制作教程——简单直线运动

solidworks动画教程之简单直线运动,附有详细的学习步骤以及众多的学习资源、配套教程视频等。

2022-08-31 11:16:54 604

原创 Meta AI 宣布对人脑和语言处理进行长期研究

人类的大脑长期以来一直是一个难题——它是如何发展的,它如何继续进化,它被开发和未开发的能力。人工智能 (AI) 和机器学习 (ML) 模型也是如此。正如人类大脑创建的 AI 和 ML 模型日益复杂一样,这些系统现在也被用于研究人类大脑本身。具体来说,此类研究正在寻求增强人工智能系统的能力,并更紧密地模仿大脑功能,以便它们能够以越来越自主的方式运行。Meta AI 的研究人员已经着手开展一项这样的计划。Facebook 母公司的研究部门近日宣布了一项长期研究,以更好地了解人类大...

2022-05-11 09:14:08 74

原创 脑机接口人因工程

脑机接口(BCI)是一种变革性的人机交互,目前正朝智能脑机交互和脑机智能融合方向发展。然而,BCI 的实用化面临极大的挑战,BCI 技术成熟度尚未能满足用户的需求,BCI 的传统设计方法有待改进。BCI 人因工程对缩小研究与实际应用之间的差距具有重要的作用,但目前尚没有引起足够的重视,也没有专门的深入论述。本文针对 BCI 人因工程,阐述以人为中心的 BCI 设计需求(来自用户)、设计思想、目标和方法以及评价指标。BCI 人因工程可望使处于不同使用条件下的 BCI 系统设计更符合人的特点、能力和需求,提升系

2022-04-18 10:57:16 304

原创 掌握新技能的义肢-只需通过用户意图就可以移动单个手指

神经系统与机器对接依靠人体主要有三个部分:大脑、肌肉和周围神经。埃隆-马斯克的Neuralink大脑植入是BCI系统的一个例子,在所有接口系统方法中,侵入性接口尽管提供了最全面的人机交互,但存在较大的损伤脑组织的风险。而使用肌电图(EMG)系统只能提供对截肢肢体末端肌肉最低程度的控制,对用户来说并不直观。在过去的十年里,意识控制的人工肢体领域有许多振奋人心的进展,最近发表在《IEEE Transactions on Biomedical Engineering》上的一项研究开发出一种外周神经接口,只

2022-04-17 11:31:38 3345 3

原创 3D神经接口系统可以感知和操纵“微型脑“

脑机接口(BCI)技术在运动康复中表现出广泛的潜力,主要依靠神经可塑性来恢复运皮质球体和工程装配体的三维多功能神经接口。来源:西北大学由西北大学(Northwestern University)Shirley Ryan Ability Lab和伊利诺伊大学芝加哥分校(UIC)的研究团队,开发了一项新技术,该项技术有助于增加对大脑发育的理解,并为神经创伤和神经退行性疾病后的大脑修复提供了解决方案。他们的研究属于首次将最复杂的3D生物电子系统与高度先进的3D人类神经相结合的研究。目的是精

2022-04-13 18:12:46 133

原创 ​多模态系统下软体机械手对多种意图的精准实时控制

脑机接口(BCI)技术在运动康复中表现出广泛的潜力,主要依靠神经可塑性来恢复运动功能并改善中风患者术后的生活质量。不过一般单纯依靠EEG信号输入的BCI系统通常很难自然地实时传达多任务软体机器人所需的各种控制命令。而多模态人机界面系统(mHMI),集合眼电信号(EOG)、脑电图(EEG)和肌电图(EMG)的特征来生成多维控制指令,有助于构建更友好、人性化的BCI辅助系统,帮助残疾人及运动障碍患者更便捷地完成基本动作。1训练测试阶段mHMI结合了EEG、EOG和EMG模式,为一个完全集...

2022-04-12 19:48:38 2710

原创 脑机 | 具有灵活背衬的新型脑机接口

Artist rendition of the flexible, conformable, transparent backing of the newbrain-computer interface with penetrating microneedles developed by a team led by engineers at the University of California San Diego in the laboratory of electrical engineerin...

2022-04-11 23:05:52 167

原创 基于 K-means 聚类算法实现图像区域分割matlab代码

1 简介对图像进行颜色区域分割.将图像转换到CIE L*a*b颜色空间,用K均值聚类分析算法对描述颜色的a*和b*通道进行聚类分析;通过提取各个颜色区域独立成为单色的新图像,对图像进行分割处理.实验结果表明,在CIE L*a*b空间使用K—means聚类算法可以有效地分割彩色纺织品图像的颜色区域.kmeans聚类算法是一种简单实用的聚类算法,matlab自带函数kmeans可直接对数据进行kmeans聚类。为了方便更好地掌握kmeans聚类算法,今天我们自己来实现一个弱化的版本mykmeans。

2022-04-09 17:12:07 1851

原创 Nature子刊:用第三只手扩展人体运动能力

在科幻小说中经常出现人的肢体与其控制的人工肢体结合在一起,增强人的运动能力,例如第三只手臂,这种运动自由度(DoF)的增加可以使一个人完成无法单靠自然肢体实现的任务,这种技术源于最初对个人功能受损的恢复,例如基于BCI系统的康复机器人,但有所不同的是,它不受传统的神经修复技术的限制,因为它不需要完美替代失去的功能,也不受自然外观的约束,主要目的为在不影响人体自然运动的情况下增加人体的运动能力。在这方面,有研究表明天生六指的人可以控制多个多余的DoF,这令他们有超出常人的操纵能力,且没有任何明显的运动缺陷。但

2022-04-08 21:36:12 232

原创 醒醒吧,深度学习不是AI的未来(Deep Learning is not the AI future)

深度学习(Deep Learning),这是一个在近几年火遍各个领域的词汇,似乎所有的算法只要跟它扯上关系,瞬间就显得高大上起来。在这短短几年时间里,深度学习颠覆了语音识别、图像分类、文本理解等众多领域的算法设计思路,渐渐形成了一种从训练数据出发,经过一个端到端(end-to-end)的模型,然后直接输出得到最终结果的一种新模式。这不仅让一切变得更加简单,而且由于深度学习中的每一层都可以为了最终的任务来调整自己,最终实现各层之间的通力合作,因而可以大大提高任务的准确度。随着大数据时代的到来以及GPU等各

2022-04-07 21:24:34 225

原创 小波分析和小波降噪Matlab实现

小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与Fourier变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。有人把小波变换称为“数学显微镜”。小波变换的概念是

2022-04-07 19:52:04 3394 4

原创 Python和Matlab小波分析

一、Matlab小波分析往期经典推文超链接:1《基于matlab的水文气象要素分析(一)》2《基于Matlab的水文气象要素分析(2)》3《中国七大气候分区》4《Morlet小波+小波功率谱+交叉小波》5《Matlab 小波功率谱》6《水文模型—Matlab版本(1)》二、Python小波分析:源代码和数据来自克里斯·托伦斯博士github:https://github.com/chris-torrenceimport numpy as np...

2022-04-07 18:45:38 807 1

原创 ​基于机器视觉的视觉刺激BCI系统实现动态控制

视觉刺激(VS)是目前无创BMI应用最广泛的范式之一,具有高精确度和高信息传递率(ITR)等优势。基于VS触发的EEG特征的BCI已被广泛用于工程中,尽管基于VS的BMI具有相对较高的信息传输速率(ITR),但仍然难以控制动态环境中的机器。一个基于机器视觉的增强现实视觉刺激动态范式(AR-VS),利用动态决策时间区分方法解码人的意图,该方法控制基于任务与自运动系统协调的机器人在快速灵活的状态下,实现了更高的灵活性和更快的执行速度。AR-VS范式AR范式由两个模块组成,分别是基于深度神...

2022-04-07 11:17:19 3246

原创 ACM MM:一种基于情感脑电信号时-频-空特征的3D密集连接网络

本文介绍一篇于计算机领域顶级会议ACM MM 2020发表的论文《SST-EmotionNet: Spatial-Spectral-Temporal based Attention 3D Dense Network for EEG Emotion Recognition》,该研究提出了一种基于注意力机制的3D DenseNet对多媒体刺激产生的情感脑电信号进行分类,该模型在统一的框架下同时提取数据中的空间、频率、时间特征;并且设计了一种3D注意机制来自适应地探索具有判别力的局部模式提升情绪分类效果,在现有的

2022-04-07 11:09:24 255

原创 浅谈脑机接口:传统神经学科的颠覆者

人类从未停止对大脑的研究,然而有关于大脑的探秘如今所发现的也仅仅只是冰山一角,作为神秘的研究领域,脑科学直到下个世纪仍是前沿科学。早在2001年,美国《麻省理工科技评论》首次提出把脑机接口领域称为将会改变世界的10大新兴技术之一。2021年美国Science杂志提出新的125个全球重大科学问题,其中18个与脑科学研究直接相关,结合我国十四五规划中,脑科学已被列为国家战略科技力量,脑机接口技术领域亦在其中……脑机接口技术研发的第一要务治病救人脑科学既是全球科技竞争的重...

2022-04-07 11:04:10 6314

原创 大脑是如何塑造你的感觉?

在加州伯克利的一个实验室里,一位白发男子坐在电视屏幕前。为他播放了一系列视频:查理·卓别林的喜剧片段、腹部手术的记录、哭泣的孩子。与此同时,在对面的房间里,我们也在看电视屏幕。不过我们看的屏幕上面,是隔壁男人的脸,展示了他对电影的每一个反应。值得注意的是,他所有的反应都一样。他以轻松的笑声回应每个人。爱情场景、喜剧或谋杀场景都同样有趣(对于这位白发男子)。每次结束后,他都自信地说他感觉棒极了。这位先生患有行为变异性额颞叶痴呆,他的情绪不再随着周围的世界而适当地变化。思考情绪

2022-04-04 23:23:34 2345

原创 AI学会了用“人眼”看世界,甚至连人类瞳孔的细微缩放都能模拟

AI学会了用“人眼”看世界为了搞清楚人类是怎么看世界的,计算机开始学着“转动眼球”了:然后凭借转动的眼球“搜集要观测的信息”,再聚焦在文字或者图像上,开始“收集数据”:不仅能正常读书看画,甚至能模拟人类在无聊、兴奋、紧张等各种不同情绪下的瞳孔放缩、眨眼频率的细微变化。事实上,这是杜克大学的研究人员最新开发的一种“虚拟眼睛”,可以精确模拟人类观测世界的方式。这项研究目前已经开源,并即将发表于通信类顶会IPSN 2022上。...

2022-04-03 16:26:34 51

原创 一维傅里叶变换与应用(基于matlab)(原理分析+上手实战)

在进入小波分析之前,我们首先要做的事情就是搞清楚傅里叶变换,很多教材、视频中讲解小波分析都会提到傅里叶变换,那么他们到底有什么关系呢?,看完这篇文章我相信你一定还是不会明白(哈哈哈哈,没想到吧,你没看错,不会明白!!!)因为我会出一个系列(专栏),专门讲解小波分析及其应用,这是专栏的第一篇文章,所以大家别着急,我们慢慢道来......1.傅里叶变换介绍首先,咱们先来看看一维的傅里叶变换:官方给出的定义:傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的..

2022-04-02 21:42:59 2410

原创 庞贝古城千年废墟复活:VR模型与眼动追踪复现被火山灰掩埋的建筑

最近,考古学家用虚拟现实技术(VR)完成了前所未有的创举。他们用VR再现了庞贝古城的一栋别墅。完美复刻了被公元79年维苏威火山喷发毁掉前的古城别墅景象。这可以让现代人更直观地了解当时的人们在家里的生活图景。用VR和眼动追踪,为当代人打造游览古代实境的完美体验自有考古学以来,学人们一直对视觉复现自己的发掘对象兴趣浓厚。在技术工具还比较老旧的过去,视觉复现考古最初分为定量流派和经验流派两种。不过在过去的15年中,技术工具日新月异,学者们开始结合不同的技术,如「位置...

2022-04-02 15:48:37 4781

原创 《Science》睡眠碎片化的机制:过度兴奋的神经元

科学家们发现,下丘脑外侧的神经元在老年小鼠的睡眠不足中发挥了关键作用。对许多老年人来说,一夜好眠是难以企及的。长期睡眠不佳的影响可能是深远的,包括认知功能的下降,对健康和总体幸福感的有害影响。幸运的是,缓解可能就在眼前。由斯坦福大学医学院的研究人员领导的一项新研究表明,大脑的外侧下丘脑的神经元在老年小鼠的睡眠不足中发挥了关键作用。更具体地说,促进觉醒的下丘脑泌素神经元变得过度兴奋,导致睡眠中断。这项研究的高级作者,精神病学和行为科学教授Luis de Lecea博士说,这一发...

2022-04-02 12:24:15 425

模型参考自适应控制(MRAC)

模型参考自适应控制simulink

2022-12-07

将npy文件转化为jpg或者png的python脚本(可直接运行)

将npy文件转化为jpg或者png的python脚本(可直接运行)

2022-12-07

稀疏角度CT生成python脚本(astra工具包)(可直接运行)

稀疏角度CT生成python脚本(astra工具包)(可直接运行) 相对于MR,CT在参数及扫描方面并不是太难,但是CT的图像重建及各种算法则是非常难的,也是比较抽象的。这篇文章介绍CT图像重建算法等相关内容。 CT技术是CT诊断的基础,帮助医务工作者充分掌握CT技术是我们的责任和义务! CT基础知识 Image Reconstruction Method 图像重建算法 在上一期内容CT原理1中,我们主要介绍了X线与物质的作用,也就是X线的衰减是如何发生的,正是由于这种衰减的存在,X线才可以被用于CT成像,那么探测器获得的衰减信号最终是如何被转换成CT图像的呢?这就涉及到图像的重建算法了,所以今天我们接着X线的衰减,继续介绍CT图像重建的原理。 1 重建算法的分类 CT重建算法共有3类,如下图。 (1)反投影法 (2)迭代重建算法 (3)解析法:包括滤波反投影法和傅里叶变换法 其中(3)解析法中的A滤波反投影法是在(1)反投影法的基础上发展起来的,通过加入滤波函数解决了图像锐利度的问题,如下图,没有加入滤波函数(Filter Function)时重建的图

2022-12-07

将jpg或者png文件转换为h5文件的源码,python文件(可直接运行)

将jpg或者png文件转换为h5文件的源码,python文件(可直接运行)

2022-12-07

aapm-ct-challenge-main

竞赛任务是利用数据驱动的重建技术从有限视角的扇形光束测量中恢复乳房模型幻影图像。这项挑战的独特之处在于,参赛者获得了一组地面真实图像及其无噪音的子采样正弦图(以及相关的有限视角过滤反投影图像),但没有获得实际的正向模型。 团队名称:robust-and-stable 完成工作:首先在一个数据驱动的几何校准步骤中估计扇形光束的几何。在随后的两步程序中,设计一个迭代的端到端网络,能够计算出接近精确的解决方案。(损失低到无法想象) 方法结构: 第一步:数据驱动的几何图形识别 第二步:预训练的U-Net作为计算支柱网络 第三步:迭代方案 方法内容(摘原文翻译,其中小部分增加自己的理解和解释,公式截原文的图,水印很恶心): 第一步 我们重建工作的第一步是从提供的训练数据中学习未知的前向算子(FBP算子)。断层扇形光束测量的连续版本是基于计算线积分。 其中x0是未知图像,L(s, )表示扇形光束坐标中的一条线,即是扇形旋转角度,s是编码传感器的位置。在一个理想化的情况下,扇形光束模型由以下几何参数指定(见图)。 d_source - X射线源到原点的距离

2022-12-07

matlab注意力机制

matlab注意力机制 原文链接: 图像处理注意力机制Attention汇总(附代码,SE、SK、ECA、CBAM、DA、CA等) 1. 介绍 注意力机制(Attention Mechanism)是机器学习中的一种数据处理方法,广泛应用在自然语言处理(NLP)、图像处理(CV)及语音识别等各种不同类型的机器学习任务中。根据注意力机制应用于域的不同,即注意力权重施加的方式和位置不同,将注意力机制分为空间域、通道域和混合域三种,并且介绍了一些关于这些不同注意力的先进注意力模型,仔细分析了他们的的设计方法和应用领域,给出了实现的代码与实验结果。 ZhugeKongan/Attention-mechanism-implementation ​github.com/ZhugeKongan/Attention-mechanism-implementation 篇外的补充: https://github.com/ZhugeKongan/torch-template-for-deep-learning/tree/main/models/Attention 2. 空间域注意力方法 对于卷积神经网

2022-12-06

matlab数组输入代码(包含详细讲解)

matlab输入数组 第一步:首先教给大家如何创建数组,MATLAB创建数组的方法比较简单,我们在MATLAB中输入如下代码:x=[2 4 6 8 10] 即可创建数组,数据之间使用空格或者逗号隔开,x=[2,4,6,8,10]可创建同样的数组,在MATLAB命令行窗口输入并运行代码创建数组如下图所示。 第二步:如果我们想进一步确认或者直观看到是否成功创建数组的话,我们可以在工作空间看到运行结果数组名称及值,我们双击即可查看创建的数组详细情况,如下图所示。 第三步:上面创建的是一维数组,接下来教大家创建二维数组,也就是矩阵,我们创建二维数组时类似上面一维数组创建,只需在行与行之间使用分号隔开即可,如我们在MATLAB命令行窗口中输入代码:x = [1 3 5 7; 2 4 6 8; 3 5 7 9]即可创建二维数组矩阵,数据之间同样可以使用逗号隔开,x = [1,3,5,7; 2,4,6, 8; 3,5,7,9]可创建同样的二维数组矩阵,在MATLAB命令行窗口输入并运行代码创建二维数组矩阵如下图所示。 第四步:同理,我们可以在工作空间看到创建的二维数组名称及值,我们双击

2022-12-06

improved-googlenet-master(googlenet代码,亲测可运行)

GoogLeNet是2014年Christian Szegedy提出的一种全新的深度学习结构,在这之前的AlexNet、VGG等结构都是通过增大网络的深度(层数)来获得更好的训练效果,但层数的增加会带来很多负作用,比如overfit、梯度消失、梯度爆炸等。inception的提出则从另一种角度来提升训练结果:能更高效的利用计算资源,在相同的计算量下能提取到更多的特征,从而提升训练结果。 外文名GoogLeNet类 型神经网络 结构介绍 inception模块的基本机构如图1,整个inception结构就是由多个这样的inception模块串联起来的。inception结构的主要贡献有两个:一是使用1x1的卷积来进行升降维;二是在多个尺寸上同时进行卷积再聚合。 图1 图1 1x1卷积 作用1:在相同尺寸的感受野中叠加更多的卷积,能提取到更丰富的特征。这个观点来自于Network in Network,图1里三个1x1卷积都起到了该作用。 图2 图2 图2左侧是是传统的卷积层结构(线性卷积),在一个尺度上只有一次卷积;图2右图是Network in Network结构(NIN结构),

2022-12-06

COVID-CT医学肺部数据集(完整,含使用教程及介绍)

# COVID-CT ### The utility of this dataset has been confirmed by a senior radiologist in Tongji Hospital, Wuhan, China, who has performed diagnosis and treatment of a large number of COVID-19 patients during the outbreak of this disease between January and April. After releasing this dataset, we received several feedbacks expressing concerns about the usability of this dataset. The major concerns are summarized as follows. First, when the original CT images are put into papers, the quality o

2022-12-06

【淘宝虚拟货源网】特色烧烤

【淘宝虚拟货源网】特色烧烤 作者:麻雀网络副业 链接:https://www.zhihu.com/question/427907658/answer/2460398387 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 一、项目市场、“钱景”我们来看看这张图<img src="https://pic1.zhimg.com/50/v2-daa1fde8cbfc0b919f454855e751d56f_720w.jpg?source=1940ef5c" data-caption="" data-size="normal" data-rawwidth="619" data-rawheight="650" class="origin_image zh-lightbox-thumb" width="619" data-original="https://picx.zhimg.com/v2-daa1fde8cbfc0b919f454855e751d56f_r.jpg?source=1940ef5c"/>这个店铺是做虚拟产品的,截至目前为止一共上架了185页产品,

2022-12-06

信息系统(硬件和软件)(原生教程)

IT Impacts Entire Industries IT Reduces the Number of Middle Managers IT makes middle managers more productive IT Changes the Manager’s Job, it changes the way managers make decisions IT provides near-real-time information Managers have less time to make decisions IT provides tools for analysis to assist in decision making Will IT Eliminate Jobs? The competitive advantage of replacing people with IT & machines is increasing rapidly Increasing the use of IT in business. It creates new job categor

2022-12-06

OSEM算法,CT重建算法之迭代类算法(matlab实现)(可直接运行)

正电子发射断层扫描仪(Positron Emission Tomography, PET)是当前医学界公认的肿瘤、心脏、脑等疾病诊断与病理生理研究的重要方法。随着核医学影像设备的广泛应用和计算机技术的迅速发展,图像重建方法作为PET成像的一个关键环节,其研究工作也越发受到重视。 PET探测器检测注入人体的示踪剂在湮灭辐射过程中产生的射线,经过符合采集系统处理形成投影线,以SINO的方式存放于计算机硬盘中[1]。计算机调用图像重建模块,生成人体断层图像。目前,PET图像基础重建算法主要包括解析法和迭代法。 1. 解析法 解析法是以中心切片定理为基础的反投影方法,常用的是滤波反投影法(Filtered Back-Projection, FBP)。在FBP中,图像重建主要包含两个步骤:反投影和滤波。 我们在初中就已经学过投影与反投影的概念,从不同角度观察物体可以得到不同的信息,当我们从多种不同角度获取物体的投影,可以反向推出这个物体真实的形态。 图1 光线将物体的形状投射到一个平面称为投影 在成像原理上,PET和CT略有差异。CT是投射成像,X射线旋转360°,采集被扫描物体不

2022-12-06

CT重建算法之统计迭代类算法;ML-EM算法(matlab的实现版本)

ML-EM算法  EM算法(Expectation Maximization Algorithm,期望极大算法)是一种解决优化问题的迭代算法,用于求解含有隐变量的概率模型参数的极大似然估计(MLE)或极大后验概率估计(MAP)。EM算法是一种比较通用的参数估计算法,被广泛用于支持向量机(SMO算法)、朴素贝叶斯、GMM(高斯混合模型)、K-means(K均值聚类)和HMM(隐马尔可夫模型)的参数估计。 理解EM算法(例子)   在统计学中,概率用于在已知一些参数的情况下,预测接下来的所得到的结果;而似然性则是用于在已知某些观测所得到的结果时,对有关事物的性质的参数进行估计。   EM算法和极大似然估计的前提是一样的,都要假设数据总体的分布,如果不知道数据分布,是无法使用EM算法的。 三硬币模型   假设有3枚硬币A,B,C,这些硬币正面出现的概率分别是π \piπ,p pp和q qq。进行如下掷硬币试验:先掷硬币A,根据其结果选出硬币B或硬币C,正面选硬币B,反面选硬币C;然后掷选出的硬币,掷硬币的结果,正面记作1,反面记作0;独立重复n此试验,观测结果: 1 , 1 , 0 ,

2022-12-06

pointnet++代码(亲测可用)

记录PointNet PyTorch版本的学习 PyTorch版本PointNet作者Tensorflow版本页面上给出的github地址,这里 数据集 PyTorch版本只给出了ModelNet的数据,只能进行部件分割,但是我想测试S3DIS数据集,所以下载了原作者给的链接中已经处理好的数据,文件为h5格式。 作者对所有的点云进行了采样,每个采样空间是一个立方体,做成一个数据,每个数据有4096个点;一个h5文件中是1000*4096*9个数字,代表1000个点云,每个点云中有4096个点,每个点有9个值xyz,rgb,剩下三个还不知道。 具体处理过程在Tensorflow版本中给出了,太复杂看不太懂。 利用这些处理好的h5文件,结合Tensorflow版本的代码写出PyTorch的数据集class,代码在indoor3d_dataset.py中。 训练 训练的代码基本参考了PyTorch版本的,只是将刚开始数据集的读取改成了S3DIS的,代码在train_indoor_3d.py中。 结果可视化 PyTorch版本用了原作者Tensorflow版本中提供的可视化代码,用ope

2022-12-06

Deep-Convolutional-Neural-Network-for-Inverse-Problems-in-Imagin

论文Deep_Convolutional_Neural_Network_for_Inverse_Problems_in_Imagin

2022-12-06

深度学习CT重建算法技术文档

深度学习CT重建算法技术文档 深度学习CT重建技术文档 目录 深度学习CT重建技术文档 1 一. 稀疏角度U-net+传统重建算法去伪影 1 1.1 U-net+FBP 2 1.2 U-net+ART 3 1.3 U-net+SART 4 1.4 U-net+ML-EM 4 1.5 U-net+OSEM 4 二. 稀疏角度U-net+mSTCT去伪影 4 三. U-net替代STCT逆希尔伯特变换 5 3.1五段直线扫描分别训练模型 5 3.1.1 STCT相关算法 5 3.1.2 U-net替代五段直线扫描分别训练模型 6 3.2 五段直线扫描合并训练模型 12 3.3 两种方法结果对比 15 四. 算法改进与提升 16 4.1 增加掩膜 16 五. 附件 17 稀疏角度U-net+传统重建算法去伪影 本小节前三种算法是代数类重建算法,后两种是统计迭代类算法,所有算法均已用matlab复现,但由于需结合U-net(python环境)进行伪影去除,所以这里在前三种方法上利用的是ASTRA工具包的python版本产生稀疏角度数据,后两种由于ASTRA包中没有,所以采用

2022-12-06

FBP算法处理CT图像结果

滤波反投影重建算法实现及应用(matlab) 1. 滤波反投影重建算法原理 滤波反投影重建算法常用在CT成像重建中,背后的数学原理是傅立叶变换:对投影的一维傅立叶变换等效于对原图像进行二维的傅立叶变换。(傅立叶中心切片定理) CT重建算法大致分为解析重建算法和迭代重建算法,随着CT技术的发展,重建算法也变得多种多样,各有各的有特点。本文使用目前应用最广泛的重建算法——滤波反投影算法(FBP)作为模型的基础算法。FBP算法是在傅立叶变换理论基础之上的一种空域处理技术。它的特点是在反投影前将每一个采集投影角度下的投影进行卷积处理,从而改善点扩散函数引起的形状伪影,重建的图像质量较好。 上图应可以清晰的描述傅立叶中心切片定理的过程:对投影的一维傅立叶变换等效于对原图像进行二维的傅立叶变换 傅立叶切片定理的意义在于,通过投影上执行傅立叶变换,可以从每个投影中得到二维傅立叶变换。从而投影图像重建的问题,可以按以下方法进行求解:采集不同时间下足够多的投影(一般为180次采集),求解各个投影的一维傅立叶变换,将上述切片汇集成图像的二维傅立叶变换,再利用傅立叶反变换求得重建图像。 投影相关

2022-12-06

arcgis超级工具免费下载

arcgis超级工具免费下载

2022-12-06

传统CT重建算法FBP算法代码,可直接运行

matlab提供大量函数,可以方便的完成fbp算法 1)fbp算法原理: 中心切片定理 (CST) : 原数据投影的一维傅立叶变换等于原数据的二维傅立叶变换 0818b9ca8b590ca3270a3433284dd417.png 投影 --> 一维傅立叶变换 --> 滤波 --> 二维傅立叶反变换 经过上述过程应该得到原始数据 2)投影相关知识 2.1)正投影:对投影线经过的像素做线积分,积分得到的值保存为该角度下的权值 对一组数据 P 做 Radon 变换,即做正投影,会得到两个数据 [R, xp] = radon(P,theta); xp是投影线条数 R是theta角下第 xp 条投影线得到的线积分,即权值 0818b9ca8b590ca3270a3433284dd417.png 0818b9ca8b590ca3270a3433284dd417.png 2.2) 反投影:反投影是利用上面投影得到的 R 权值,把R值投回到 x y 坐标中 x y 满足 x*cos(theta) + y*sin(theta) = R 就表明点(x, y)在投影线上

2022-12-06

matlab SIRT代码(可直接运行)(含运行文档)

SIRT算法其思想在于利用通过该像素的全部射线,其迭代过程对图像每个像素的更新量是对所有投影线的修正按照贡献因子取加权平均,然后反投影得到。与ART每条投影线都对图像更新一次不同,SIRT算法综合了所有投影线的贡献,可以避免一条投影线上的误差对重建结果带来过大影响,因而可以有效抑制重建图像中的噪声。 2、算法实现步骤 (1)对第 条射线,计算估计投影值 (2)计算实际投影与估计投影的误差 (3)反投影值 其中, 是所有投影角度下光线的集合. (4)对第 个像素点的值进行修正 (5)将上一轮的结果作为初值,重复(1)~(4)的过程,直到达到收敛要求或指定的迭代次数。 因此,SIRT算法的迭代公式为: 其中, 是松弛因子, 是迭代次数。 3、优缺点分析 由于SIRT算法对所有投影线的修正量进行了加权平均,显著地降低了迭代的收敛速度。另一方面,对每个像素更新时,需要计算好所有投影线的贡献,因此在实际计算中需要对各个投影线的贡献量进行存储,存储量至少比ART算法多一倍。因此,SIRT算法具有更好的稳定性,但是收敛速度慢、存储容量大,此两点成为影响其应用的主要问题。

2022-12-06

ansys仿真实验素材

ANSYS软件是美国ANSYS公司研制的大型通用有限元分析(FEA)软件,是世界范围内增长最快的计算机辅助工程(CAE)软件,能与多数计算机辅助设计(CAD,computer Aided design)软件接口,实现数据的共享和交换,如Creo, NASTRAN、Algor、I-DEAS、AutoCAD等。是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。在核工业、铁道、石油化工、航空航天、机械制造、能源、汽车交通、国防军工、电子、土木工程、造船、生物医学、轻工、地矿、水利、日用家电等领域有着广泛的应用。ANSYS功能强大,操作简单方便,已成为国际最流行的有限元分析软件,在历年的FEA评比中都名列第一。中国100多所理工院校采用ANSYS软件进行有限元分析或者作为标准教学软件。

2022-12-06

ASTRA-toolbox工具箱

关于CT重建,如今已经有许多可用的开源工具箱来实现,这避免了花大量时间研究算法并重现,在实际应用中非常便捷。比如ASTRA工具箱,不仅涵盖二维、三维重建,可GPU加速,而且兼容MATLAB、Python以及Windows、Linux系统,适合各类应用场景。然而,网上关于该工具箱的介绍很少,所以在此做一些简单介绍,以便参考和回顾。 一、官网与下载 工具箱的官网为: The ASTRA Toolbox ​www.astra-toolbox.com/ 在Downloads模块即可下载最新版本的工具箱: 下载之后,还需注意在不同环境下的配置不同,比如我安装的Windows下的Matlab环境,就至少需要配置Visual Studio 2015,且做GPU加速需要CUDA8.0,等等。这些都可以在Documentation-Installation instructions部分了解。 二、工具箱学习 ASTRA工具箱提供大量案例,而且官网Documentation部分详细讲解了所有的调用方式。 分别针对投影对象、投影光束、算法等,都有不同的工具来初始化、重建图像等,大概看懂案例即可熟

2022-12-06

图像去噪DnCNN深度学习算法,亲测可用(含文档、论文)

图像去噪最简单的网络之一DnCNN之讲解 softmax softmax​ ​关注他 67 人赞同了该文章 关于DNCNN图像去噪网络的简介 DnCNN是图像去噪领域一篇鼻祖类型的文章,本文是关于该文章主要原理的解读。DnCNN(Denoising Convolutional Neural Network)顾名思义,就是用于去噪的卷积神经网络。 文章标题:Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising 文章链接:https://arxiv.org/pdf/1608.03981.pdf 如果加载太慢也可以用镜像:http://xxx.itp.ac.cn/pdf/1608.03981.pdf 代码链接: https://github.com/cszn/DnCNN(官方) 或者: https://github.com/SaoYan/DnCNN-PyTorch

2022-12-06

plt保存图像代码(可直接运行)(python)

plt保存图片 画图占的内存很多,经常导致jupyter 卡顿,当图片超级多时,将图片复制到Excel里面也会导致Excel崩溃,因此需要我们将图片单独保存起来 复制代码 import seaborn as sns import matplotlib.pyplot as plt fig = plt.figure(figsize=[16,12]) for col,i in zip(col1,range(1,53)): sns.boxplot(data=data_iv, x='label', y=col) plt.title(col) f = plt.gcf() #获取当前图像 f.savefig(r'D:\{}.png'.format(col)) f.clear() #释放内存 复制代码 注意plt.show() 和plt.savefig("filename.png") 的顺序 复制代码 #得到的是一张空白的图片 import matplotlib.pyplot as plt import

2022-12-06

爱心源码(matlab)(可直接运行)

本算法包含了matlab的爱心的画法,快去给女神表白吧! love1 clear;clc b=0:0.01*pi:2*pi; a=2; r=a*(1-sin(b)); h=polarplot(b,r,'r'); box on set(h,'LineWidth',3); title({'公式1';'笛卡尔表白:p=a(1-sin(\theta))'}); love2 clear;clc a=ezplot('x^2-abs(x)*y+y^2-15'); axis square grid on set(a,'color','r','LineWidth',3); title({'公式2';'x^2-|x|y+y^2-15=0'}); love3 clear;clc f=@(x,y,z)(x.^2+2.*y.^2+z.^2-1).^3-x.^2.*z.^3-0.1.*y.^2.*z.^3; [x,y,z]=meshgrid(linspace(-3,3)); val=f(x,y,z); [p,v]=isosurface(x,y,z,val,0);

2022-12-06

matlab数组运算相关知识及代码(可运行)

matlab数组运算相关知识及代码(可运行) 逻辑运算符 描述 & 逻辑与运算符,& 两边的表达式的结果都为 1 时返回 1,否则返回 0。 | 逻辑或运算符,| 两边的表达式结果有一个为 1 时返回 1,都为 0 时才返回 0。 ~ 逻辑非运算符,~ 会对表达式的结果进行取反操作。表达式为 1 时得到 0,为 0 时得到 1。 A = [0 9 6; 1 3 0]; B = [1 4 3; 1 5 0]; 1 2 使用逻辑运算符对两个数组进行运算 A & B 1 运行过程: 在使用&运算符对两个数组进行运算时,要注意 &运算符的使用,& 两边的表达式的结果都为 1 时返回 1,否则返回 0。 0 & 1 9 & 4 6 & 3 1 & 1 3 & 5 0 & 0 运行结果: 数组的除法运算 说明:数组中 ./和 .\都可以做除法运算,但是它们的区别是在于 MATLAB里 \是左除,/是右除。在下面数值运算的例子中 A ./ B 等效于 B .\ A。 A ./ B

2022-12-06

Conditional Tabular GANs的代码

本文的目的是解释Conditional Tabular GANs的工作原理,因为目前我还没有看到类似这样的文章。 表格数据生成是一个不断发展的研究领域。 CTGANs 论文已成为许多其他机器学习架构的基础,这些架构如今构成了该研究领域的最新技术。 为什么要生成表格数据? 我们都知道如何使用生成对抗网络 (GAN) 生成图像数据。 我们现实中最常用的数据类型是表格数据。 表格数据是结构化的,在训练机器学习模型时通常更容易处理。 然而,虽然文本数据的生成方式和图形数据差不多,但是在生成表格数据时,要制作一个性能良好的模型,实际上会使事情复杂化很多。 本文的目标是了解 CTGAN 的工作原理。 为此,我将首先对 GAN 和表格数据进行简要说明。 然后我将介绍原始 CTGAN 论文中描述的架构。 最后,我将通过一个使用 Python 的示例实现。 回顾 GAN GAN 属于深度学习生成器的分支。 这是一个监督学习问题,我们有一组真实数据,我们希望通过使用生成器来扩充这个数据集。 GAN 学习生成样本与学习样本的分布有着根本的不同 GAN 由两个神经网络:生成器和鉴别器组成。 生成器

2022-12-06

U-net去伪影深度学习算法(可运行自己的数据集)

该算法可以实现深度学习去除各类图像中的伪影。Unet 发表于 2015 年,属于 FCN 的一种变体。Unet 的初衷是为了解决生物医学图像的问题,由于效果确实很好后来也被广泛的应用在语义分割的各个方向,如卫星图像分割,工业瑕疵检测等。 Unet 跟 FCN 都是 Encoder-Decoder 结构,结构简单但很有效。 Encoder 负责特征提取,可以将各种特征提取网络放在这个位置。 Decoder 恢复原始分辨率,该过程比较关键的步骤就是 upsampling 与 skip-connection。 Unet主要可分为三部分来看分别为左(特征提取),中(拼接),右(上采样) 特征提取部分:它是一个收缩网络,通过四个下采样,使图片尺寸减小,在这不断下采样的过程中,特征提取到的是浅层信息。具体过程是,输入图片然后经过两个卷积核(3x3后面紧跟着一个Relu)以论文原图为例:输入572x572,经过两个卷积核(大小为3x3)大小从572-570-568,然后经过一个Maxpool(2x2)图片尺寸变为284这即为一个完整的下采样,接下来三个也是如此。在下采样的过程中,

2022-12-06

CT重建过程中的各种工具类算法(包括产生稀疏视角图像、各种格式数据变换)

CT重建过程中的各种工具类算法(包括产生稀疏视角图像、各种格式数据变换)

2022-12-06

CT重建算法,迭代重建算法,ART算法的实现(亲测可运行)

CT重建算法,迭代重建算法,ART算法的实现(亲测可运行) ART(Algebra Reconstruction Technique, ART),即代数重建法。 在图像重建方法中,迭代重建法的经典方法是Gorden R.等提出的代数重建法(Algebra Reconstruction Technique, ART),及Gilbert P.提出的联合迭代重建算法(Simultaneous Iterative Reconstruction Technique, SIRT)。 (1) 联合代数重建方法(SART) 代数重建算法在迭代过程中,每次投影计算的修正值并不是完全相同,穿过同一像素网格时,图像的模糊误差修正将会引起重建区域的严重噪声,且算法需要较多的迭代次数才能得到较好的重建结果,重建效率不高。针对这些问题Anderson和Kak于1984年提出了联合代数重建算法。该算法对于每个像素是同一投影角度内通过该像素的所有射线误差值之累加,其实质就是对ART中的噪声进行了平滑,因此可以获得较为理想的重建结果。 (2) 乘型代数重建方法(Multiplicative ATR ,MATR) 上面所

2022-12-06

软件工程课程设计 (文档)(哈尔滨工程大学)

在2019年爆发了一场来势凶猛,波及全球新冠疫情。由于这场疫情的相关病毒具有很长时间的潜伏期、高速的传播速度以及高度的变异性。在后疫情时代,不断的零散的疫情在不同时间不同地点爆发,波及的人员当地常驻人员及相关流动人员均为可能感染人员,此时就需要用到一些技术手段对此类人群进行核酸检检测,而检测后的大量的复杂的可能存在冗余的结果数据均需要保存下来。同时为了方便查看及管理,还需要一个可以方便管理和检查的系统,让政府、医务工作者可以方便的管理疫情信息及时采取隔离等疫情防控措施;让广大人名群众可以随时依据身份证号码查询的自己的检测记录,以便能够及时的了解自身即周围社区、人的状态。 疫情信息管理系统的设计与开发就是为了解决上述的问题,以期提供给各类用户及管理员一个更加方便、快捷、高效的疫情信息的管理系统,同时把数据库课程中学习到的东西实际运用起来,所以开发此疫情信息管理系统,以适应后疫情时代急需高质量的数据库管理系统来管理不断增加的庞大,复杂多变的信息数据的现实。该系统的开发,能有效解决流动人口和常驻人口的核酸检测记录的不科学、多重复、难以管理等问题,由过去人工方式转变成为计算机数据库统一管理方式

2022-12-06

软件工程课程设计(哈尔滨工程大学)

核酸检测系统的设计与实现 摘 要 随着电脑的普及,现在的管理也提升了一个档次,逐渐实现了无纸化办公,即从原来的人工记录管理模式转变成为电脑一体化管理模式。而核酸检测记录依然处于人工处理阶段,属于纯手工管理,效率低,易出错,手续繁琐,而且耗费大量的人力,物力,财力。该系统针对上述问题,开发此核酸检测系统,以代替人工管理的不足。该系统的开发,能有效解决核酸检测记录的不科学,多次重复的问题,由过去人工方式转变成为计算机方式。该系统能够极大地提高效率,这也是核酸检测的科学化,正规化管理的重要条件。 本文研究了一个核酸检测系统,该系统基于B/S架构模式,使用SpringBoot框架开发设计而成。系统主要以Java语言作为开发基础,使用了Freemarker+SpringBoot等技术,采用Idea作为开发工具,以MySql作为数据库工具。本系统只有后台管理模块,后台管理模块实现用户管理、人员管理、地址管理、核酸检测记录等功能。本系统功能比较完善,界面友好,操作简单,方便核酸检测的统计工作。 利用现代信息技术手段实现的核酸检测的记录,更重要的是,管理员可以快捷的录入每一核酸检测的人员。  关

2022-12-06

圣诞树源码(matlab)

matlab圣诞树源码 三、此代码圣诞树只可以旋转,也可以添加背景音乐,更完整的代码请关注微信公众号海洋纪回复“圣诞快乐”即可获得。 四、给对象或者朋友画指定对象的圣诞树 可以更改第47行代码title(‘Merry Christmas’,‘color’,‘w’,…)在Merry Christmas后面加上自己对象或者朋友的名字,比如Merry Chirstmas to Cao DR.效果如下图所示:

2022-12-06

matlab三维数组代码

matlab 三维数组代码

2022-12-06

防疫信息管理系统(附带开发文档,讲解运行视频)(可做毕设)

随着电脑的普及,现在的管理也提升了一个档次,逐渐实现了无纸化办公,即从原来的人工记录管理模式转变成为电脑一体化管理模式。而核酸检测记录依然处于人工处理阶段,属于纯手工管理,效率低,易出错,手续繁琐,而且耗费大量的人力,物力,财力。该系统针对上述问题,开发此核酸检测系统,以代替人工管理的不足。该系统的开发,能有效解决核酸检测记录的不科学,多次重复的问题,由过去人工方式转变成为计算机方式。该系统能够极大地提高效率,这也是核酸检测的科学化,正规化管理的重要条件。 本文研究了一个核酸检测系统,该系统基于B/S架构模式,使用SpringBoot框架开发设计而成。系统主要以Java语言作为开发基础,使用了Freemarker+SpringBoot等技术,采用Idea作为开发工具,以MySql作为数据库工具。本系统只有后台管理模块,后台管理模块实现用户管理、人员管理、地址管理、核酸检测记录等功能。本系统功能比较完善,界面友好,操作简单,方便核酸检测的统计工作。 利用现代信息技术手段实现的核酸检测的记录,更重要的是,管理员可以快捷的录入每一核酸检测的人员。  关键词:核酸;核酸检测系统;Spri

2022-12-06

天牛须优化搜索算法(matlab)

天牛须搜索算法(beetle antennae search,BAS)算法是2017年提出的一种 基于天牛觅食原理的适用于多目标函数优化的新技术,其生物原理为:当天牛觅食时,其并不知道食物在哪里,而是根据食物气味的强弱来觅食。天牛有两只长触角,如果左边触角收到的气味强度比右边大,那下一步天牛就会向左边飞,反之则向右飞。依据这一简单原理天牛就可以有效找到食物。与遗传算法、粒子群算法等类似,BAS 不需要知道函数的具体形式以及梯度信息,就可以自动实现寻优过程,且其个体仅为一个,寻优速度显著提高。 算法步骤如下: (1)创建天牛须朝向的随机向量且做归一化处理 式中: rand()为随机函数; ||rands()||表示空间维度。 (2)创建天牛左右须空间坐标 (3)根据适应度函数判断左右须气味强度,即f(x_l)和f(x_r)的强度, 函数f()为适应度函数。 (4)迭代更新天牛的位置 式中: 表示在第 i次迭代时的步长因子;sign()为符号函数。 核心代码

2022-12-06

防疫信息管理系统:哈尔滨工程大学数据库课程设计(完整可运行系统,带讲解、文档)

哈尔滨工程大学数据库课程设计系统(完整可运行系统,带讲解、文档):是2019级保研学长自己做的系统,有完整的系统讲解文档,设计文档,系统配置文件、运行文件,包括环境配置破解教程。因为自己学这门课的时候苦于没有教程,费力的做了好久,希望要保研的学弟学妹们不要这么心酸,拿到系统可以自己做一下修改(都很简单,改一改前端界面就行),文档写一写保证优秀。加油! 本系统是防疫信息管理系统 为了能够解决后疫情时代的对于流动人口和本地居民的常态化核酸检测同时把数据库课程中学习到的东西实际运用起来,所以开发此疫情信息管理系统,以适应后疫情时代急需高质量的数据库管理系统来管理不断增加的庞大,复杂多变的信息数据的现实。该系统的开发,能有效解决流动人口和常驻人口的核酸检测记录的不科学、多重复、难以管理等问题,由过去人工方式转变成为计算机数据库统一管理方式。该系统能够极大地提高效率,这也能够为疫情时代核酸检测常态化提供科学的、规范的检测方案和达到实际的效果。 本文研究开发的疫情信息管理系统总体是基于B/S架构模式,并使用SpringBoot框架共同开发设计而成。系统主要以大众化的主流的大型项目语言——Java语

2022-12-06

PointNet和PointNet++的Pytorch实现

更新 2021/03/27: (1)发布语义分割的预训练模型,其中PointNet++可以达到53.5%的mIoU。 (2) 发布预训练模型用于分类和部分分割log/。 2021/03/20:更新分类代码,包括: (1) 添加训练ModelNet10数据集的代码。使用--num_category 10. (2) 添加仅在 CPU 上运行的代码。使用--use_cpu. (3) 增加离线数据预处理代码,加速训练。使用--process_data. (4) 添加用于均匀采样训练的代码。使用--use_uniform_sample. 2019/11/26: (1) 修复了之前代码中的一些错误并增加了数据增强技巧。现在只用1024分就可以达到92.8%! (2) 增加了测试代码,包括分类和分割,以及可视化的语义分割。 (3) 将所有模型整理成./models文件,方便使用。

2022-08-31

PointNet:用于 3D 分类和分割的点集的深度学习

这项工作基于我们的arXiv 技术报告,该报告将出现在 CVPR 2017 中。我们提出了一种新颖的点云深度网络架构(作为无序点集)。您还可以查看我们的项目网页以获得更深入的介绍。 点云是一种重要的几何数据结构。由于其不规则的格式,大多数研究人员将此类数据转换为规则的 3D 体素网格或图像集合。但是,这会使数据变得不必要地庞大并导致问题。在本文中,我们设计了一种直接消耗点云的新型神经网络,它很好地尊重了输入中点的排列不变性。我们的网络名为 PointNet,为从对象分类、部分分割到场景语义解析的应用提供了统一的架构。虽然简单,但 PointNet 非常高效且有效。 在这个存储库中,我们发布了代码和数据,用于在从 3D 形状采样的点云上训练 PointNet 分类网络,以及在 ShapeNet Part 数据集上训练部件分割网络。

2022-08-31

基于pytorch实现的、带GUI的图像风格迁移程序.

Numpy wxPython pytorch torchvision PIL Usage: $ python StyleTransferGui.py button: content img:选择内容图片 style img:选择风格图片 Start:启动风格转换程序 Model Choice:选择模型 Preferences->hyper parameter:设置训练超参数

2022-08-31

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除