半环与形式幂级数及不动点理论
半环与形式幂级数
在半环和形式幂级数的研究中,有很多重要的概念和定理。
首先是克罗内克积(Kronecker product),它对于研究形式幂级数的哈达玛积(Hadamard product)很有用。设$i_j \in I_j$,对于$j = 1, 3, 4, 6$,可以得到:
[
\begin{align }
((AB) \otimes (CD)) {(i_1,i_3),(i_4,i_6)}&=(AB) {i_1,i_3}(CD) {i_4,i_6}\
&=\sum {i_2\in I_2}\sum_{i_5\in I_5}A_{i_1,i_2}B_{i_2,i_3}C_{i_4,i_5}D_{i_5,i_6}\
&=\sum_{i_2\in I_2}\sum_{i_5\in I_5}A_{i_1,i_2}C_{i_4,i_5}B_{i_2,i_3}D_{i_5,i_6}\
&=\sum_{(i_2,i_5)\in I_2\times I_5}(A \otimes C) {(i_1,i_4),(i_2,i_5)}(B \otimes D) {(i_2,i_5),(i_3,i_6)}\
&=((A \otimes C)(B \otimes D))_{(i_1,i_4),(i_3,i_6)}
\end{align }
]
接下来是无环线性方程(Cycle - Free Linear Equations)。设$\Sigma$是一个字母表,
超级会员免费看
订阅专栏 解锁全文
12

被折叠的 条评论
为什么被折叠?



