降维:主成分分析(PCA)

本文介绍了主成分分析(PCA)的步骤,包括数据预处理、计算协方差矩阵、选取特征向量等,并提供了使用Apache Spark的PCA实现进行降维的测试代码,通过线性回归模型展示了降维前后的MSE比较。
摘要由CSDN通过智能技术生成
定义:可以将特征向量投影到低维空间,实现对特征向量的降维
步骤:
1.数据预处理。这里预处理包含俩个部分:均值归一化和属性范围调整。均值归一化是相应属性减去平均值;而属性范围则在归一化基础上除以属性方差。
2.计算特征之间的协方差矩阵。该矩阵是一个n*n的对称矩阵。
3.计算协方差矩阵的特征值和特征向量。
4.将特征值从大到小排序。
5.保留最上面的N个特征向量。
6.将原数据映射到由N个特征向量构成的新空间中。

测试代码:
packa
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值