【参文】GCN-bike(-)

1. Bike Flow Prediction with Multi-Graph Convolutional Networks

摘要:
管理自行车共享系统的一个基本问题是自行车流量预测。由于单站流量预测难度较大,近期研究多采用集群级流量预测。然而,它们不能直接指导站级细粒度的系统管理问题。在本文中,我们重新审视了车站级自行车流量预测的问题,旨在利用深度学习技术的突破来提高预测精度。我们提出了一个多图卷积神经网络模型来预测站点级别的流量,其中关键的新颖性是从图的角度查看自行车共享系统。更具体地说,我们为自行车共享系统构建了多个图来反映异构站间关系。之后,我们融合多个图并应用卷积层来预测车站级未来的自行车流量。真实自行车流量数据集的结果验证了我们的多图模型可以通过减少高达 25.1% 的预测误差来胜过最先进的预测模型。
bib:

@inproceedings{2018Bike,
author = {Chai, Di and Wang, Leye and Yang, Qiang},
title = {Bike Flow Prediction with Multi-Graph Convolutional Networks},
year = {2018},
isbn = {9781450358897},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3274895.3274896},
doi = {10.1145/3274895.3274896},
pages = {397–400},
numpages = {4},
location = {Seattle, Washington},
series = {SIGSPATIAL '18},
}

2. RESGCN: RESidual Graph Convolutional Network based Free Dock Prediction in Bike Sharing System

摘要:
共享单车作为一种环保型公共交通工具,已成为一种重要的城市交通工具,为城市居民提供廉价、便捷的服务。然而,共享单车系统中站点的停靠站数量在建设时是固定的,现实中存在自行车使用和供应不平衡的问题。准确的实时免费码头预测可以帮助指导用户选择合适的车站(有免费自行车/码头)来租用或还车。许多早期的努力都是基于基于模型的方法来进行共享单车预测的。最近,已经引入了深度神经网络(DNN),如卷积神经网络(CNN)和循环神经网络(RNN)来解决交通预测问题。然而,要进行准确的实时自由码头预测,还有三个尚未解决的问题,例如学习自行车使用的复杂时间变化和周期性、不同站点之间自由码头的空间相关性以及天气等外部因素的影响。为了克服这些挑战,我们提出了一种新颖的深度神经网络模型,它将图卷积和残差结构结合在一起。我们首先将共享单车系统建模为加权图,并通过图卷积层中的随机游走操作提取站点之间的非欧式空间相关性(由图中的加权边表示)。此外,通过残差结构捕获不同时间尺度的自由码头的周期性模式,并考虑外部因素以提高预测的准确性。我们还基于波士顿骑行旅行的公共真实世界数据集进行了综合实验,结果表明我们的方法优于最先进的基线。

3. Towards Fine-grained Flow Forecasting: A Graph Attention Approach for Bike Sharing Systems

作为城市机动出行的健康、高效和绿色替代方案,共享单车越来越受欢迎,导致自行车代替汽车的广泛部署和使用。单个站点级别的准确自行车流量预测对于自行车共享服务至关重要。由于交通网络的空间和时间复杂性以及自行车站缺乏数据驱动的设计,现有方法无法预测进出每个站的细粒度自行车流量。

为了解决这个问题,我们提出了一种新的数据驱动的时空图注意力卷积神经网络,用于自行车站级流量预测(GBikes)。我们开发了数据驱动和时空设计,并将自行车站(节点)和站间自行车骑行(边)建模为图形。特别是,我们设计了一种新颖的图注意力卷积神经网络 (GACNN),其注意力机制可以捕获和区分站与站之间的相关性。综合考虑多级时间接近度、空间距离和其他外部因素(例如天气和兴趣点),对每个站点的自行车流量进行综合学习和准确预测。从纽约市、芝加哥和洛杉矶的三个大型共享单车系统收集的总计超过 1100 万次出行的广泛实验证实了 GBikes 在准确性、鲁棒性和有效性方面的显着改进优于先前的工作。
bib:

@inproceedings{2020Towards,
author = {He, Suining and Shin, Kang G.},
title = {Towards Fine-Grained Flow Forecasting: A Graph Attention Approach for Bike Sharing Systems},
year = {2020},
isbn = {9781450370233},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3366423.3380097},
doi = {10.1145/3366423.3380097},
pages = {88–98},
numpages = {11},
location = {Taipei, Taiwan},
series = {WWW '20}
}

4. Optimizing Bike Sharing System Flows Using Graph Mining, Convolutional and Recurrent Neural Networks

摘要:
共享单车系统(BSS)是一种流行的服务方案,部署在世界各地不同规模的城市中。有效地保持自行车共享系统尽可能平衡是主要问题,因此,预测或最大限度地减少自行车在城市中的人工运输是主要目标,以节省运营公司的物流成本。本文的目的有两个:使用卷积神经网络 (CNN) 识别空间结构及其结构变化,该网络获取不平衡子图的邻接矩阵快照,以及长短期记忆人工循环神经网络 (RNN LSTM) ) 以发现和预测其动态模式。因此,我们正在预测未来可能的子图配置中每个节点的自行车流量,从而通知自行车共享系统所有者进行相应的计划。通过节省时间和最大限度地降低成本,城市规划和自行车共享公司都可以从中受益。

5. Demand prediction for a public bike sharing program based on spatio-temporal graph convolutional networks

摘要:
公共自行车共享(PBS)项目的运营由于自由浮动自行车共享项目遇到的诸多问题而再次受到关注。这些问题包括恶意破坏、盗窃、乱停车、大规模亏损和破产。短时需求预测是PBS节目成功运行的关键问题。在这项研究中,我们使用一种新颖的时空图卷积网络 (STGCN) 通过探索多视图数据中的潜在信息来预测取货/退货需求。我们应用图卷积神经网络 (CNN) 来表示基于表示码头位置的地理信息系统数据的空间依赖性。此外,我们使用门控 CNN 根据代表公共自行车取/还需求的时间序列数据来表示时间依赖性。 STGCN 和三个基于循环神经网络 (RNN) 的竞争对手使用来自温岭 PBS 程序的多视图数据进行了为期一个月的训练和验证。基于 RNN 的竞争对手包括 SimpleRNN、长短期记忆和门控循环单元。结果表明,与竞争对手相比,STGCN 实现了更高的预测精度。尽管与 SimpleRNN 相比,STGCN 消耗了更长的训练时间,但它需要最少的 epoch 数才能达到收敛精度。 STGCN 中完整的 CNN 结构可以有效解决 PBS 需求预测的空间和时间依赖性。

6. Station Correlation Attention Learning for Data-driven Bike Sharing System Usage Prediction

摘要:
经过多年的发展,共享单车已成为全球城市居民的主要交通工具之一。然而,由于站点级需求和供应不平衡,共享单车资源的有效利用具有挑战性,这导致共享单车系统的维护非常艰巨。为实现系统效率,已努力准确预测自行车交通(需求/上车和还车/下车)。尽管如此,由于自行车共享系统的时空复杂性,自行车站交通预测很困难。此外,由于大量的自行车站,对整个自行车共享系统的这种预测水平也具有挑战性。

为了填补这一空白,我们提出了 EikeGAAN,这是一种图邻接注意力神经网络,用于预测整个自行车共享系统的车站级自行车流量。所提出的预测系统由一个带有注意力机制的图卷积网络组成,该网络区分系统中自行车站特征之间的空间相关性,以及一个捕获时间相关性的长短期记忆网络。我们对自行车使用情况、天气、兴趣点和事件数据进行了广泛的数据分析,并得出了自行车共享网络的图形表示。通过对美国纽约市、芝加哥市、华盛顿特区和洛杉矶四个大城市的超过 2700 万次自行车共享系统的实验研究,我们的网络设计在预测城市自行车站流量方面表现出很高的准确性,表现优于其他基线和最先进的模型。

7. Predicting station-level hourly demand in a large-scale bike sharing network: A graph convolutional neural network approach

被引次数:106
摘要:
本研究提出了一种具有数据驱动图过滤器 (GCNN-DDGF) 模型的新型图卷积神经网络,该模型可以学习站点之间隐藏的异构成对相关性,以预测大规模共享单车网络中站点级别的每小时需求。探索了 GCNN-DDGF 模型的两种架构; GCNN(reg)-DDGF 是一个常规的 GCNN-DDGF 模型,它包含卷积和前馈块,而 GCNN(rec)-DDGF 还包含一个来自长短期记忆神经网络架构的循环块,以捕获自行车中的时间依赖性-共享需求系列。此外,提出了四种类型的 GCNN 模型,其邻接矩阵基于各种共享单车系统数据,包括空间距离矩阵(SD)、需​​求矩阵(DE)、平均行程持续时间矩阵(ATD)和需求相关矩阵(DC )。这六种类型的 GCNN 模型和其他七种基准模型是在纽约市的 Citi Bike 数据集上构建和比较的,该数据集包括 272 个站点和 2013 年至 2016 年的超过 2800 万笔交易。结果表明 GCNN(rec)-DDGF 执行了在均方根误差、平均绝对误差和确定系数 (R-2) 方面最好,其次是 GCNN(reg)-DDGF。它们优于其他模型。通过基于学习到的 DDGF 进行更详细的图网络分析,获得了对 GCNN-DDGF 模型的“黑匣子”的洞察。发现它捕获了一些类似于嵌入在 SD、DE 和 DC 矩阵中的细节的信息。更重要的是,它还揭示了站点之间隐藏的异构成对相关性,这些相关性没有被任何这些矩阵揭示。
bib:

@article{2018Predicting,
title = {Predicting station-level hourly demand in a large-scale bike-sharing network: A graph convolutional neural network approach},
journal = {Transportation Research Part C: Emerging Technologies},
volume = {97},
pages = {258-276},
year = {2018},
issn = {0968-090X},
doi = {https://doi.org/10.1016/j.trc.2018.10.011},
url = {https://www.sciencedirect.com/science/article/pii/S0968090X18300974},
author = {Lei Lin and Zhengbing He and Srinivas Peeta},
}

8.Graph convolutional network approach applied to predict hourly bike-sharing demands considering spatial, temporal, and global effects

摘要:
解决供需失衡是公共自行车共享系统稳定实施的最关键问题。 通过考虑自行车需求的空间和时间特性,可以通过提高需求预测的准确性来缩小这种差距。 然而,只有少数尝试同时说明这两个特征。 因此,我们提出了一个基于图卷积网络的预测框架。 我们的框架不仅反映了站点之间的空间依赖性,还反映了不同时期的各种时间模式。 此外,我们考虑了全局变量的影响,例如天气和工作日/周末,以反映非站点级别的变化。 我们使用首尔共享单车系统的数据将我们的框架与其他基线模型进行比较。 结果表明,我们的方法比现有的预测模型具有更好的性能

9. Rebalance Modern Bike Sharing System: Spatio-Temporal Data Prediction and Path Planning for Multiple Carriers

摘要:
现代共享单车系统,自行车可以自由停放,扩展了传统共享单车系统的灵活性,极大地方便了城市交通。然而,这种系统的平衡经常被用户行为打破。而如何管理在一个城市随意停放的大量自行车是一个难题。为了解决这个问题,我们提出了一个两步解决方案。首先,我们处理自行车轨迹数据并设计时空自行车流量预测(ST-BFP)模型,这是一个基于残差框架的卷积网络,具有历史外部因素来预测自行车流量。其次,为了使系统尽快恢复到平衡状态,我们提出了一种基于预测结果的多载波路径规划的改进局部搜索算法(ILSA),该算法实时调度多个载波以协同完成重新平衡任务。最后,我们通过基于真实数据的实验验证了我们的模型和算法。实验结果表明,我们的方法可以有效地平衡整个系统。
bib:

@inproceedings{2018Rebalance,
  title={Rebalance Modern Bike Sharing System: Spatio-Temporal Data Prediction and Path Planning for Multiple Carriers},
  author={ Qin, R.  and  Kong, L.  and  Guo, M.  and  Yao, B.  and  Guizani, M. },
  booktitle={2018 IEEE 24th International Conference on Parallel and Distributed Systems (ICPADS)},
  year={2018},
}

10 .Practical End-to-End Repositioning Algorithm for Managing Bike-Sharing System

摘要:
共享单车服务中最关键的问题之一是自行车重新定位问题,即服务提供商必须如何重新安置自行车以保持服务质量。在本文中,我们针对自行车重新定位问题提出了一种端到端的方法,该方法通过多辆卡车之间的合作实现了操作员可行的重新定位计划。我们提出的算法由三个程序组成。首先,我们根据自行车使用信息通过深度学习预测每个站点的租借和归还自行车数量。其次,我们通过解决整数优化问题来确定满足每个站点可用性的最佳自行车数量。最后,我们解决了制定为另一个整数优化问题的车辆路径问题。根据我们的算法,服务运营商实际上可以参考卡车容量、路线和要装卸的自行车数量来执行搬迁任务。我们通过对一家日本公司的真实自行车数据进行数值实验,证明了我们的算法在现实世界中的适用性。

@inproceedings{2019Practical,
  title={Practical End-to-End Repositioning Algorithm for Managing Bike-Sharing System},
  author={ Yoshida, A.  and  Yatsushiro, Y.  and  Hata, N.  and  Higurashi, T.  and  Fujisawa, K. },
  booktitle={2019 IEEE International Conference on Big Data (Big Data)},
  year={2019},
}

二、时空图卷积

11. Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting

摘要:
及时准确的交通预测对于城市交通控制和引导至关重要。由于交通流的高度非线性和复杂性,传统方法不能满足中长期预测任务的要求,并且往往忽略了空间和时间相关性。在本文中,我们提出了一种新的深度学习框架,时空图卷积网络(STGCN),用于解决交通领域的时间序列预测问题。我们不使用正则卷积和递归单元,而是在图上表达问题,并构建具有完整卷积结构的模型,这使得使用较少参数的训练速度更快。实验表明,我们的模型STGCN通过对多尺度交通网络建模有效地捕获了全面的时空相关性,并在各种现实世界交通数据集上始终优于最先进的基线
abstract = {Timely accurate traffic forecast is crucial for urban traffic control and guidance. Due to the high nonlinearity and complexity of traffic flow, traditional methods cannot satisfy the requirements of mid-and-long term prediction tasks and often neglect spatial and temporal dependencies. In this paper, we propose a novel deep learning framework, Spatio-Temporal Graph Convolutional Networks (STGCN), to tackle the time series prediction problem in traffic domain. Instead of applying regular convolutional and recurrent units, we formulate the problem on graphs and build the model with complete convolutional structures, which enable much faster training speed with fewer parameters. Experiments show that our model STGCN effectively captures comprehensive spatio-temporal correlations through modeling multi-scale traffic networks and consistently outperforms state-of-the-art baselines on various real-world traffic datasets.},

@inproceedings{2017Spatio,
author = {Yu, Bing and Yin, Haoteng and Zhu, Zhanxing},
title = {Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting},
year = {2017},
isbn = {9780999241127},
publisher = {AAAI Press},
booktitle = {Proceedings of the 27th International Joint Conference on Artificial Intelligence},
pages = {3634–3640},
numpages = {7},
location = {Stockholm, Sweden},
series = {IJCAI'18},
doi={10.24963/ijcai.2018/505},
}

12. Graph Wavenet for Deep Spatial-Temporal Graph Modeling

abstract = {Spatial-temporal graph modeling is an important task to analyze the spatial relations and temporal trends of components in a system. Existing approaches mostly capture the spatial dependency on a fixed graph structure, assuming that the underlying relation between entities is pre-determined. However, the explicit graph structure (relation) does not necessarily reflect the true dependency and genuine relation may be missing due to the incomplete connections in the data. Furthermore, existing methods are ineffective to capture the temporal trends as the RNNs or CNNs employed in these methods cannot capture long-range temporal sequences. To overcome these limitations, we propose in this paper a novel graph neural network architecture, Graph WaveNet, for spatial-temporal graph modeling. By developing a novel adaptive dependency matrix and learn it through node embedding, our model can precisely capture the hidden spatial dependency in the data. With a stacked dilated 1D convolution component whose receptive field grows exponentially as the number of layers increases, Graph WaveNet is able to handle very long sequences. These two components are integrated seamlessly in a unified framework and the whole framework is learned in an end-to-end manner. Experimental results on two public traffic network datasets, METR-LA and PEMS-BAY, demonstrate the superior performance of our algorithm.},
摘要:
时空图建模是分析系统中组件的空间关系和时间趋势的重要任务。现有方法大多捕获固定图结构的空间依赖性,假设实体之间的基础关系是预先确定的。然而,显式图结构(关系)不一定反映真正的依赖关系,并且由于数据中的不完整连接,可能会丢失真正的关系。此外,现有方法对于捕获时间趋势无效,因为这些方法中使用的RNN或CNN不能捕获长程时间序列。为了克服这些局限性,我们在本文中提出了一种新的图神经网络结构,图波网络,用于时空图建模。通过开发新的自适应依赖矩阵并通过节点嵌入学习,我们的模型可以精确地捕获数据中隐藏的空间依赖。随着层数的增加,接收场呈指数增长的叠加扩展一维卷积组件,Graph WaveNet能够处理非常长的序列。这两个组件在一个统一的框架中无缝集成,整个框架以端到端的方式学习。在两个公共交通网络数据集METR-LA和PEMS-BAY上的实验结果证明了我们算法的优越性能。

@inproceedings{2019Graph,
author = {Wu, Zonghan and Pan, Shirui and Long, Guodong and Jiang, Jing and Zhang, Chengqi},
title = {Graph Wavenet for Deep Spatial-Temporal Graph Modeling},
year = {2019},
isbn = {9780999241141},
publisher = {AAAI Press},
booktitle = {Proceedings of the 28th International Joint Conference on Artificial Intelligence},
pages = {1907–1913},
numpages = {7},
location = {Macao, China},
series = {IJCAI'19},
doi={https://doi.org/10.48550/arXiv.1906.00121},
}

13. T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction

@ARTICLE{2019T,  author={Zhao, Ling and Song, Yujiao and Zhang, Chao and Liu, Yu and Wang, Pu and Lin, Tao and Deng, Min and Li, Haifeng},  journal={IEEE Transactions on Intelligent Transportation Systems},   title={T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction},   year={2020},  volume={21},  number={9},  pages={3848-3858},  doi={10.1109/TITS.2019.2935152}}

14. Spatial-Temporal Synchronous Graph Convolutional Networks: A New Framework for Spatial-Temporal Network Data Forecasting

@article{2020Spatial,
  title={Spatial-Temporal Synchronous Graph Convolutional Networks: A New Framework for Spatial-Temporal Network Data Forecasting},
  author={ Chao Song and  Youfang Lin  and  Shengnan Guo  and  Huaiyu Wan. },
  journal={Proceedings of the AAAI Conference on Artificial Intelligence},
  volume={34},
  number={1},
  pages={914-921},
  year={2020},
  doi={https://doi.org/10.1609/aaai.v34i01.5438},
}

15. Spatial-Temporal Fusion Graph Neural Networks for Traffic Flow Forecasting

@article{2020STFGNN,
  title={Spatial-Temporal Fusion Graph Neural Networks for Traffic Flow Forecasting},
  author={Mengzhang Li. and  Zhanxing Zhu },
  year={2020},
  doi={https://arxiv.org/abs/2012.09641},
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值