Balancing public bicycle sharing system using inventory critical levels in queuing network
- https://doi.org/10.1016/j.cie.2020.106277
- 期刊: Computers & Industrial Engineering
- 2020
集锦
• 有必要平衡加油站的库存,以尽量减少被拒绝的需求。
•对于每个路由,都定义了一个临界级别来接受或拒绝其请求。
•拒绝部分请求会减少被拒绝的请求总数。
•该模型使每次旅行的平均拒绝请求数最小化。
• 使用封闭的Jackson网络开发模型。
方法
- 排队论, 封闭的jackson网络,排队网络
- 基因遗传算法
1. 引言
公共自行车共享系统(PBSS)被称为一种新的可行交通系统,用于减少城市高峰时段的污染和交通,帮助人们增加流动性,获得更健康的生活。该系统允许用户从车站租用自行车并将其返回目的地车站。将该系统与其他可用的交通系统一起使用,可以帮助城市在提高通勤者日常交通的灵活性方面取得进展。 Saberi、Ghamami、Gu、Shojaei和Fishman(2018年)分析了伦敦公共交通系统中断之前、期间和之后的自行车共享流动模式。他们研究了公共交通中断对共享自行车出行模式的影响。莫利尼略,鲁伊斯-蒙塔涅斯和利巴纳-卡巴尼拉斯(2019年)研究了影响公共自行车共享使用的社会人口和行为因素系统集成成为公众运输网络当地公共汽车、地铁和通勤列车的通行费。
考虑到不同的目标,有各种因素影响公共共享系统的设计。一个是系统的车队规模,可根据需求和可用容量确定,旨在减少不满或平衡车站库存。
- 乔治和夏(2011)研究了公共共享系统的排队网络模型,以获得适当的车队规模,使利润最大化。
- 拉维夫和科尔卡(2013)讨论了站点的初始库存水平,以减少用户因面对空置的站点进行租赁和缺少空置的停车位而引起的不满。
- 奈尔和米勒(2014)研究了公共共享系统的站点位置和容量,以系统收益最大化为目标,开发了一个双目标规划模型。
- 在他们的模型中,预算被视为一种约束。
- Jian、Freund、Wiberg和Henderson(2016)使用了以下组合启发式算法以及模拟分析纽约花旗自行车系统,目的是通过定义适当的自行车和车位分配来最小化自行车和车座短缺。
- 严、林、陈、谢(2017)研究了确定性和随机需求下的模型,并开发了一种启发式算法来求解随机模型他们确定了车队规模、路线和站点位置的数量。
- Yan、Lu和Wang(2018)为他们的两个随机需求模型定义了一组场景,以优化分配给车站的自行车。他们使用启发式算法求解模型,并在台湾自行车租赁系统上进行了测试。
- 林和杨,2011年 ,Martinez等人,2012年 ,de Almeida Correia和Antunes,2012年 ,Fricker and Gast,2016年还提供了模型来研究公共共享系统的车队规模、库存和站点位置。
由于不同站点的自行车租赁需求和不同路线的出行时间差异很大,系统可能会面临不平衡的情况,导致用户不满。对此问题进行了调查,并提出了不同的技术,以确保出租自行车的可用性和归还自行车的空码头。一些研究人员将这种情况作为静态情况进行研究,在这种情况下,在空闲时间会发生重新定位。有一些关于动态再平衡的工作,其中系统再平衡的操作是在活动时间执行的。
- Regue and Recker(2014年)考虑需求预测、站点库存、再分配需求和车辆出行四个核心模型,对再平衡问题进行了动态研究。
- 埃尔多安等人(2014)定义了站点库存的下限和上限,以决定静态情况下用于重新定位自行车的车辆路线。他们的整数规划使用分支和cut算法 .
- Kadri、Kacem和Labadi(2016年)提出了一个静态模型来确定车辆承载和重新定位自行车的时间表,以重新平衡系统。他们定义了自己的模型,以便车辆只能到达每个站点一次。
- Zhang、Yu、Desai、Lau和Srivathsan(2017)提出了一种基于估计库存水平的启发式算法,用于在活动时间内重新平衡共享系统。他们提出了一个动态混合整数规划模型。
- Chiarotti、Pielli、Zanella和Zorzi(2018年)利用历史数据制定了一项动态再平衡政策,以分析网络状况并定义适当的再平衡措施。他们使用图论来选择重新平衡系统的路径。
- Nair和Miller-Hooks,2011年 , Contardo等人,2012年 ,Chemla等人,2013年 ,拉维夫等人,2013年 , Dell'Amico等人,2014年 , Alvarez-Valdes等人,2016年 , Bulhóes等人,2018年和 Ghosh和Varakantham(2017)还研究了静态和动态定位问题。
其他平衡自行车共享系统库存的方法称为激励方法。
- Waserhole(2013)研究了用户在定义行程时知道租赁成本的模型。目标是通过定价激励,利用自律系统最大限度地增加出行次数。
- Pfrommer、Warrington、Schildbach和Morari(2014)提出了一个模型,鼓励用户将自行车归还到最近的未充分使用的车站,而不是由工作人员重新定位自行车,目的是将成本降至最低。
Kaspi等人,2014年 , Kaspi等人,2016年)调查了公共自行车共享系统的停车预留政策,在该系统中,用户在原车站和停车场陈述其目的地,将在目的地车站为用户预留停车位。袁、张、王、梁和张(2019)考虑了几个子问题,如自行车站的数量、位置和容量;车队总规模及其再平衡混合整数线性规划模型他们使用基于场景的方法来处理随机需求。
定义库存系统的临界水平是管理库存的一种有效方法,以便获得更高的收入或获得更多的客户满意度。在这些系统中,为每个客户类别定义了关键级别。如果库存低于某类客户的预定义临界水平,则拒绝为不耐烦或更有价值的客户保留库存的请求。
- Kranenburg和Houtum(2008)考虑到平均等待时间的限制,通过为不同的客户群体定义临界水平,将在售后市场中为客户持有和运输备件的成本降到最低。
- Enders、Adan、Scheller-Wolf和van Houtum(2014)计算零售商系统的最佳临界水平,当库存低于临界水平时,患者客户的需求被延期,其他请求得到满足。
- Escalona、Ordóñez和Kauak(2017年)研究了高优先级和低优先级两类的临界水平优先客户用于快速移动的项目。他们通过测量交付周期内两个班的满意需求来评估模型。
这里,库存临界水平被用作一种主动的平衡方案。当且仅当原始站点的库存水平等于或高于指定行程的预定义临界水平时,才满足每个请求。这有助于避免将自行车发送到库存水平较高的车站,并将其引导到空置码头较多的目的地。是否有空置或已建成的车站取决于每个车站或路线的需求。车队规模和车站容量是影响公共共享系统效率的变量。
在下一节中,在定义了所需的参数之后,我们将开发所建议模型的目标函数和约束。考虑均值分析(MVA)的遗传算法(GA)在第3节对模型进行求解。为了评估所提方法的适用性,在第4节 .
2. 模型描述
用户、车站、自行车和不同目的地的请求是自行车共享系统中最重要的要素。对不同路线的不同需求可能导致缺少用于归还自行车的空码头,或缺乏满足租用自行车要求的库存。为目的地定义适当的临界水平有助于避免出现不平衡站点,并降低重新平衡系统的成本。考虑 c l i j cl_{ ij} clij作为具有原始站点 i i i及其目的站j的路线的临界水平. 在这种情况下,如果用户在车站 i i i去车站 j j j,如果站点 i i i的库存水平inventory level等于或者高于 c l i j cl_{ij} clij,则他的请求可满足;否则用户离开站点。我们提出了一个模型来定义车队规模、车站容量和路线临界水平的适当数量,目的是最小化被拒绝请求的平均数量和每个满足的租车请求等待空置码头归还自行车的平均用户数量。显然,车队规模存在限制。在本节中,在定义了所需的参数和变量后,将给出模型。
2.1 指示和变量
本节介绍了参数、指标和决策变量。
-
K: 站点节点集(带有有限服务器的Jackson网络节点)
K \mathcal{K} K:车站数量 -
I: 一组路由节点(带有无限服务器的Jackson网络节点),其中每条路由显示为两个站点的组合(节点)
-
N: set of nodes ( N = I ∪ K ) N = I\cup K) N=I∪K)
N: 节点总数 ( N = K + C K 2 ) (N = K +C^2_K ) (N=K+CK2) -
i,j,l: 集N的指数 i = 1 , 2 , 3 , ⋯ , K i = 1,2,3,\cdots,K i=1,2,3,⋯,K展示自行车站, i = K + 1 , K + 2 , ⋯ , K + ( K − 1 ) i = K +1,K+2,\cdots,K+(K-1) i=K+1,K+2,⋯,K+(K−1)显示从车站1分别到车站2, ,3 , …,K的路线,持续到 i = K + ( K − 1 ) 2 + 1 , K + ( K − 1 ) 2 , ⋯ , K + ( K − 1 ) 2 + ( K − 1 ) i = K+(K-1)^2+1, K+(K-1)^2,\cdots, K+(K-1)^2+(K-1) i=K+(K−1)2+1,K+(K−1)2,⋯,K+(K−1)2+(K−1)表示从站点K分别到站点1,2,…,K-1的路线。
-
n ˉ \bar{n} nˉ:组件向量,用于描述其显示为的每个状态,表示为 ( n 1 , n 2 , ⋯ , n N ) (n_1,n_2,\cdots,n_N) (n1,n2,⋯,nN)
n i n_i ni: 节点可用自行车数 ( i ∈ N i\in N i∈N) -
π ( n i ) \pi(n_i) π(ni):存在的概率n个我车站自行车我稳定状态(系统长期运行后的状态)
π i ( n i ; t ) \pi_i(n_i;t) πi(ni;t)当车队的大小等于t的时候,在平稳状态下站点 i i i的具有 n i n_i ni辆自行车的概率 -
r i j r_{ij} rij:在车站 i i i的一辆自行车请求去车站 j j j的概率
r i j ′ r'_{ij} rij′: percentage of requesting a bike in station i for going to station j considering critical levels in the steady state which is a decision variable ( i , j ∈ K ) (i,j \in K) (i,j∈K) -
r r r: route probability vector which is considered as ( r 12 , r 13 , ⋯ , r 1 K , r 23 , ⋯ , r 2 K , r K 1 , ⋯ , r K , K − 1 ) (r_{12},r_{13},\cdots, r_{1K},r_{23},\cdots,r_{2K},r_{K1},\cdots,r_{K,K-1}) (r12,r13,⋯,r1K,r23,⋯,r2K,rK1,⋯,rK,K−1)
-
p i l p_{il} pil:路由矩阵的元素P(P),它显示了在实施临界水平之前,封闭Jackson网络中不同可能节点之间行驶自行车的概率( i , l ∈ N i,l \in N i,l∈N)
p i l ′ p'_{il} pil′:第二个路由矩阵的元素P′,它显示了在实施关键级别后,封闭Jackson网络中不同可能节点之间行驶自行车的概率( i , l ∈ N i,l\in N i,l∈N) -
h i h_i hi:车站最大可能容量($i\in K)
-
s i s_i si:车站库存数,我这是一个决策变量( i ∈ K i\in K i∈K)
-
F: 系统的最大容量,即, F = ∑ ∀ i ∈ S h i F=\sum_{\forall i \in S}h_i F=∑∀i∈Shi
-
Q: 作为决策变量的车队规模
-
γ i \gamma_i γi: 车站自行车租赁需求均值
-
β i \beta_i βi: 1 β i \frac{1}{\beta_i} βi1的指数分布意味着对每辆bike结束路线 i ( i ∈ I ) i(i\in I) i(i∈I)的平均时间。
-
c i c_i ci:节点 i i i上的服务数, c i = 1 , ∀ i ∈ K c_i=1, \forall i \in K ci=1,∀i∈K和 c i = F , ∀ i n I c_i =F,\forall in I ci=F,∀inI.
-
μ i \mu_i μi:节点 i i i服务率 ;
-
λ i \lambda_i λi:进入节点 i i i的总平均流量
λ i ( t ) \lambda_i(t) λi(t):当车队大小为t的时候站点 i i i的总的平均流量速率。 -
L i L_i Li:节点处的预期自行车数我 (否)
L i ( t ) L_i(t) Li(t):当车队大小为t的时候站点 i i i处的预期自行车 -
W i W_i Wi:节点平均等待时间
W i ( t ) W_i(t) Wi(t):当车队大小为t的时候站点 i i i平均等待时间 -
c l i j cl_{ij} clij:在车站 i i i的一辆自行车请求到达车站 j j j的临界水平。 这是一个决策变量,如果站点 i i i中可用自行车的数量小于 c l i j cl_{ij} clij.然后在原车站 i i i租一辆自行车至目的站j个是被禁止的
-
B e s t I t Best_{It} BestIt:为迭代计算的最佳目标函数它在定义的遗传算法中.
2.2 模型设计
在封闭的Jackson网络中,指定数量的项目在节点之间的网络中不断移动,并且它们永远不会离开系统。公共自行车共享系统(PBSS)包含固定数量的自行车,可以在不同的站点之间租用和移动。因此,从自行车的角度来看,我们可以使用封闭的Jackson网络对系统进行分析。因此,自行车被视为网络的客户,路线和站点被定义为服务器。Jackson网络的节点可分为两组:第一组包括具有一个虚拟服务器的节点,用于描述站点和用户到达时间,并将其视为服务时间;第二组包括具有以下功能的路由节点:F类将行程时间定义为服务时间的虚拟服务器。请注意,路由节点的服务器数量必须被视为无限,但因为最多有F类自行车,服务器数量定义为F类… 图1描述了在 n ˉ = ( n 1 , n 2 , ⋯ , n i , n j , ⋯ , n N ) \bar{n}=(n1,n2,\cdots,n_i,n_j,\cdots,n_N) nˉ=(n1,n2,⋯,ni,nj,⋯,nN)的状态和 n ˉ ; i + , j − = ( n 1 , n 2 , ⋯ , n i + 1 , n j − 1 , ⋯ , n N ) \bar{n};i^+,j^-=(n1,n2,\cdots,n_i+1,n_j-1,\cdots,n_N) nˉ;i+,j−=(n1,n2,⋯,ni+1,nj−1,⋯,nN)之间的转化关系。
作为进一步的解释,图2 ,图3显示3个站点系统应用临界水平前后的站点和路线节点及其关系。例如,节点2标识站点2,节点6定义从站点2到站点1的路由。
世界上有各种类型的公共自行车共享系统,本文讨论了一种PBSS,在这种PBSS中,客户在使用车站中的应用程序租用自行车之前预先定义其目的地。他们必须将自行车返回预定的目的地。因此,对于每条路线,可以定义一个单独的临界水平来控制系统。在本文中,路线i到j(i,j∈K)意味着从i站租用自行车前往j站,并且只考虑从i站到j站的一条路线。两站之间的旅行时间可能因客户选择到达目的地的街道而异。因此,为了使模型更真实,每个route被定义为Jackson网络中的分离节点,Jackson网络是使用了
1
/
β
i
1/\beta_i
1/βi的指数分布,其中
β
i
\beta_i
βi是一辆车结束route的平均时间。如果临界水平
c
l
i
j
=
1
cl_{ij}=1
clij=1,则从i到j的租赁概率不变且等于
r
i
j
r_{ij}
rij.如果
c
l
i
j
>
1
cl_{ij}>1
clij>1,则建议的概率可能减少为
r
i
j
′
r'_{ij}
rij′. 当为特定路线定义了临界水平时,为所选路线租赁自行车的可能性可能会降低,因为至少存在库存水平
c
l
i
j
cl_{ ij}
clij公司是响应请求所必需的.
目标是最小化被拒绝请求的平均数量和每个被响应的租用请求等待空闲码头的平均用户数量。换言之,目标是尽可能减少对响应的租用请求不满意的用户的平均数量。这是通过将不满意用户的平均数量除以平均出行次数来计算的,该模型试图在系统失衡情况恶化之前尽可能地将其最小化。因此,该模型除了最大化系统中的平均行程数外,还最小化了不满意的用户。这一积极主动的政策有助于建立一个更加平衡的系统,并降低重新定位自行车进行平衡的成本。模型现在可以描述如下:
3. 解决方法
在本节中,开发了一种遗传算法(GA)来计算近似解。平均值分析(MVA)布鲁尔和巴尔博(1980)被称为计算概率
π
(
n
i
)
\pi(n_i)
π(ni)的合适方法如前所述,临界水平可能会改变不同路线的出行概率。当指定路线的临界水平大于1时,就会发生这种情况。因此,根据第二路线矩阵的元素对模型进行了修改P′而不是矩阵P(P).使用变量
r
i
j
′
r'_{ij}
rij′求解模型后,变量
c
l
i
j
cl_{ij}
clij通过在稳态下使用适当的算法得到。然后可以将新模型写为:
注意分子中的第一项 (1)在 (7)第一个术语定义了由于面对空站点而被拒绝的请求的平均数量,第二个术语显示了当原始站点的库存水平低于预定义的临界水平时被拒绝的需求的平均数量。函数的其他项通过使用变量
c
l
i
j
cl_{ij}
clij替换变量
r
i
j
′
r'_{ij}
rij′修正。制约因素 (3) , (4) , (5)与约束相同 (1) , (2) , (3) , (4) , (5)和约束 (12)定义正在使用的新变量,而不是critical levels.
图4描述了用于解决该问题的遗传算法的步骤。所提算法的步骤将在后续部分中定义。临界水平通过拒绝部分租车请求来影响站点之间的旅行概率。通过这种方式控制请求,以最小化目标函数。拒绝某些请求可能会导致更改初始概率。因此,找到新概率的适当数量来平衡系统,使它们被视为与临界水平相关的变量。
如所示图4对于不同路径的概率,在达到适当的数量后,计算临界水平。换句话说,定义临界水平是为了拒绝某些请求或降低在某些路线上行驶的概率,以最小化模型的目标函数。因此,在求解算法中,首先将概率作为变量进行计算,然后计算导致这些概率的临界水平。
3.1 .Population
图5描述了遗传算法种群中使用的染色体类型。
如图所示,每个染色体的第一个元素定义自行车总数或车队规模。元素2到K+1(subset2)分别显示站点1到K的容量。其他子集用于不同请求的新概率。例如,subset3包含站点1中发送到站点2 , 3、…、K的请求概率和subset K+2分别表示车站需求概率K去车站1 , 2、…、K-1。考虑到约束条件,随机创建第一个种群, (3) , (4) , (5)避免制定不可行的解决方案。
3.2 .The first and second route matrix
以下程序用于计算第一个路由矩阵P和第二个路由矩阵P′对于每个染色体(在算法中,积分部分定义为“[ ]”。注意,
i
,
j
,
∈
K
;
l
∈
I
i,j,\in K; l\in I
i,j,∈K;l∈I)
3.3 .平均值分析(MVA)
为了获得生成的染色体的精细度,使用了MVA方法。该方法包括以下步骤:
3.4 交叉
使用旋轮法随机选择程序生成向量
1
×
(
K
(
K
−
1
)
+
1
)
1\times (K(K-1)+1)
1×(K(K−1)+1)时,每个元素为0或1。新染色体的元素是根据随机向量的元素从其父母中选择的。为了避免不可行的后代,使用随机向量的第一个元素来选择新染色体的第一个和第二个子集。生成随机向量的其余元素用于选择新染色体的其他元素。以下程序用于交叉操作。随机向量、父代和子代表示为随机 ,分别是家长1 ,家长2 ,儿童1和儿童2。
图6描述了一个交叉运营商考虑4个站点的公共自行车共享系统的示例。在这种情况下,父染色体是
1
×
17
1\times 17
1×17向量和随机生成的向量是
1
×
13
1\times 13
1×13.
提出的交叉过程满足约束条件 (3) , (4) , (5).它确保每个站点的站台数量不超过预定的最大容量,并且有足够的站台用于停放系统中的所有自行车。
3.5. Mutation
在这个操作中,从人群中随机选择一条染色体。在开发一个
1
×
(
K
(
K
−
1
)
+
1
)
1\times (K(K-1)+1)
1×(K(K−1)+1)随机向量的元素是从0到1之间的区间中随机选择的,考虑到模型的约束,重新生成随机向量中相应元素小于突变百分比的所选染色体的元素。以下程序用于确保生成可行的解决方案。随机选择的染色体、突变百分比、随机向量和新解由 SChrom ,mu ,Rand和Child确定。 .
图7定义了我们建议的一个示例变异算子考虑一个有4个站点的系统,突变率为0.045。对于精英操作员,每个群体的一部分最佳染色体被转移到下一个群体。对于停止标准,该算法将继续执行,直到最后两次迭代的结果之间的差异没有显示出超过预定义数量的改进。
3.6 .Approximate critical levels in the steady state
在使用遗传算法得到最终解后,计算了稳态下不同目的地的临界水平。定义这些临界水平是为了控制不同路线的需求,以最小化前面提出的目标函数。等式。 (13)显示了临界水平和最终解决方案元素之间的关系:
从站点i到j的旅程的发生仅当至少有
c
l
i
j
cl_{ij}
clij辆自行车在原始站点;否则请求被拒绝。表1的列分别表示可用自行车的数目,发生的概率和累计概率。基于等式(13),
c
l
i
j
cl_{ij}
clij是站点i的最小数目当它的累计概率大于或等于
(
1
−
r
i
j
′
r
i
j
)
(1-\frac{r'_{ij}}{r_{ij}})
(1−rijrij′).在到达稳定状态之间,站点i到站点j的随机拒绝的概率为
(
1
−
r
i
j
′
r
i
j
)
(1-\frac{r'_{ij}}{r_{ij}})
(1−rijrij′)。
4. 数值案例
为了说明该方法,生成并求解了各种随机数值示例。考虑一个有4个站点的公共共享系统。如前所述,该系统可以在包含16个节点的Jackson网络下进行研究,其中4个是站点,12个是路由节点。两者都有指数分布120辆自行车在这4个车站之间行驶。表2给出了示例的参数。目标是找到正确的车队规模、每个站点的容量和路线临界水平,以最大限度地减少被拒绝请求的平均数量以及每个被响应的租车请求等待归还自行车的平均用户数量。系统的最大可能机队规模被视为120,这由一个约束条件指定。
首先,针对示例的最大容量情况计算目标函数,即没有临界水平,船队规模等于120,每个站包含30个码头。利用MVA方法,计算出拒绝需求的平均数、等待空船坞的平均用户数和接受需求的平均值分别为43.9772、45.449和128.0201,目标函数为0.6985。这意味着,对于满足的租车请求,0.6985个请求可能会面临租车空站或停车满站的情况。接下来,使用所提出的遗传算法对示例进行求解,以获得适当数量的车队规模、站点容量和临界水平,目的是减少每个响应的租车请求的未满足用户的平均数量。
使用田口方法 Taguchi method交叉率、突变率和种群大小的调谐量分别为0.75、0.035和110。该方法描述如下Byme和Taguchi(1987) .图8显示了GA获得的最终解决方案。第一和第二路由矩阵以及解决方案的关键级别如所示图9 .
虽然车队规模和车站容量有所减少,但目标函数变为小于0.6985。表3显示了GA获得的解决方案与最大容量情况的比较。
如中所示图9,从4号站到1号站和3号站的跳闸临界水平分别为3和11。表4显示了站点4中现有自行车的累积概率。此表用于获取从站点4到站点3租用自行车的临界水平。
c
l
43
cl_{43}
cl43是第4站的最小自行车数,其累计发生概率等于或大于
1
−
r
43
′
r
43
)
=
0.97784
1-\frac{r'_{43}}{r_{43}})=0.97784
1−r43r43′)=0.97784.这发生在第12行(n4=11),这意味着只有在站点4处至少有11辆自行车时,才会满足站点4中前往站点3的请求;否则,租赁请求将被拒绝。
评估计算方法
c
l
i
j
(
i
,
j
∈
K
)
cl_{ij}(i,j\in K)
clij(i,j∈K) 在中讨论第3.6节使用Arena软件对模型进行了两种情况下的仿真。首先,根据以下数量进行模拟
r
i
j
′
(
i
,
j
∈
K
)
r'_{ij}(i,j\in K)
rij′(i,j∈K) 然后通过定义
c
l
i
j
(
i
,
j
∈
K
)
cl_{ij}(i,j\in K)
clij(i,j∈K) 处于稳定状态。稳定状态下两种情况下,站点中的平均自行车数量接近。
图10给出了模拟结果,显示了所考虑示例和另一个具有8个站点的示例中两种情况下站点库存的平均数量。两种情况下的雷达图几乎重叠,这表明近似方法对于获得适当的临界电平是有效的。
为了更好地解释,表5给出了10个随机生成的示例,用所提出的遗传算法求解。使用所提出的方法获得的改进是显著的。如前所述,所提出的遗传算法的所有参数均使用田口方法进行调整。使用所提出的遗传算法对每个示例进行四次求解,并计算其标准偏差。将最佳解决方案与MVA的结果(考虑到系统的最大容量)进行比较,以证明和易性模型的。标准偏差是验证算法所得结果的良好标准,从某种意义上来说,较小的标准偏差表示更好的解决方案有效性。
获得车队规模、车站容量和临界水平的适当数量有助于平衡公共自行车共享系统。因此,它可以提高用户的满意度,并可以减少重新定位自行车所产生的重新平衡成本。这被认为是一种积极主动的方法。
5. Conclusion
我们考虑了一项积极的政策,以平衡公共自行车共享系统的库存。为此,计算了合适的临界水平,作为在稳态下接受或拒绝不同路线需求的决策规则。如果原始站点的自行车数量低于为请求的目的地预定义的临界水平,则拒绝请求。此外,车队规模和车站容量是其他决策变量,其目的是最小化被拒绝需求的平均数量和每个响应的租车请求等待空置码头的平均用户数量。该模型在考虑站点和路线节点的封闭Jackson网络下进行了研究。基于均值分析方法,开发了一种遗传算法来解决该问题,并提出了一种近似方法来定义最终解的临界水平。生成了一些示例并进行了求解,以表明该模型的适用性。结果表明,该算法取得了可接受的改进,并在考虑临界水平的情况下,对车队规模和公共共享系统的容量做出了适当的决策。作为进一步的研究,该模型可以考虑静态或动态再平衡方法进行扩展。增加再平衡激励措施和决定车站位置似乎值得调查。此外,制定一些新政策,以改变客户退货的行为,达到能够平衡系统的最佳服务费率(Beauread、Polotski、Bhuiyan和Thomson(2017年)讨论了生产计划的最佳服务率),可以考虑对模型进行改进。此外,拟议的自行车公共共享系统对其他公共交通系统的适用性
辅助资料:
伪代码
第一矩阵和第二矩阵
\begin{algorithm} %生成浮动式图
\caption{First Matrix and Secand Matrix} %标题
% 由algorighmic完成代码的编译部分
\begin{algorithmic}[1] %[1]表示每行显示行号 ,且由123..排序
\For{$i=1,\cdots,N$}
\For{$l=K+1:K+K(K-1)$}
\For{$j=1:K$}
\If{ $l=K+(i-1)(K-1)+j-1 $or $l=K+(i-1)(K-1)+j$}
\State $p_{il}=r_{ij}$
\State $p'_{il}=r'_{ij}$
\EndIf
\If{$i=l-K-(K-1)[\frac{l-K-1}{K-1}]$ and $i <[\frac{l-K-1}{K-1}]+1$}
\State $p_{li}=1$
\State $p'_{li}=1$
\ElsIf{$i=l-K-(K-1)[\frac{l-K-1}{K-1}]$ and $i \leq [\frac{l-K-1}{K-1}]+1$}
\State $p_{l,i+1}=1$
\State $p'_{l,i+1}=1$
\ElsIf{$i=l$}
\State $p'_{il}=1- \sum_{\forall j, j\neq i}p'_{ij}$
\Else
\State $p_{il}=0$
\State $p'_{il}=0$
\EndIf
\EndFor
\EndFor
\EndFor
\end{algorithmic}
\end{algorithm}
交叉
\begin{algorithm} %生成浮动式图
\caption{First Matrix and Secand Matrix} %标题
% 由algorighmic完成代码的编译部分
\begin{algorithmic}[1] %[1]表示每行显示行号 ,且由123..排序
\For{$i=1,\cdots,K(K-1)+1$}
\If{i=1}
\If {Rand(1,i)=1}
\State Child1(1,1:K+1) =Parent1(1, 1:K+1)
\State Child2(1,1:K+1) =Parent2(1, 1:K+1)
\Else
\State Child1(1,1:K+1) =Parent2(1, 1:K+1)
\State Child2(1,1:K+1) =Parent1(1, 1:K+1)
\EndIf
\Else
\If {rand(1,i)=1}
\State Child1(1,i+k) =Parent1(1,i+K)
\State Child2(1,i+k) =Parent2(1,i+K)
\Else
\State Child1(1,i+k) =Parent2(1,i+K)
\State Child2(1,i+k) =Parent1(1,i+K)
\EndIf
\EndIf
\EndFor
\end{algorithmic}
\end{algorithm}
\end{document}
突变
\begin{algorithm} %生成浮动式图
\caption{Mutation} %标题
% 由algorighmic完成代码的编译部分
\begin{algorithmic}[1] %[1]表示每行显示行号 ,且由123..排序
\For{$i=1,\cdots,K(K-1)+1$}
\If{i=1}
\If {Rand(1,i) <mu}
\State Child(1,1:K+1)=Regenerate SChrom(1,1:K+1) considering: Child(1,1) $\leq F \& \sum_{j=2}^K$child(1,k) $\geq$child(1,1)
\Else
\State Child(1,1:K+1) =SChrom(1, 1:K+1)
\EndIf
\Else
\If {rand(1,i)<mu}
\State Child(1,1:K+1)= Regenerate SChrom(1,1:K+1) considering:child (1,i+K) $\leq r(1,i-1)$
\Else
\State Child(1,i+K)=SChrom(1.i+K)
\EndIf
\EndIf
\EndFor
\end{algorithmic}
\end{algorithm}