关于深度学习中激活函数的思考总结(转载+原创)

先记录,回头详细写一份



http://www.cnblogs.com/neopenx/p/4453161.html




http://blog.csdn.net/liulina603/article/details/44915905/


1.ReLU非线性特征 

一句话概括:不用simgoid和tanh作为激活函数,而用ReLU作为激活函数的原因是:加速收敛。

因为sigmoid和tanh都是饱和(saturating)的。何为饱和?个人理解是把这两者的函数曲线和导数曲线plot出来就知道了:他们的导数都是倒过来的碗状,也就是,越接近目标,对应的导数越小。而ReLu的导数对于大于0的部分恒为1。于是ReLU确实可以在BP的时候能够将梯度很好地传到较前面的网络。

ReLU(线性纠正函数)取代sigmoid函数去激活神经元


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值