如果傅里叶变换
那么
式中为非零的实常数。
对于这种特殊情况,(1)式变为
由上可见,信号在时域中压缩()等效于在频域中扩展;反之,信号在时域中扩展(
)则等于在频域中压缩。因为信号的波形压缩
倍,信号随时间变化加快
倍,所以它包含的频率分量增加
倍,也就是说频谱展开
倍。根据能量守恒定律,各频率分量的大小必然减少
倍。
如果傅里叶变换
那么
式中为非零的实常数。
对于这种特殊情况,(1)式变为
由上可见,信号在时域中压缩()等效于在频域中扩展;反之,信号在时域中扩展(
)则等于在频域中压缩。因为信号的波形压缩
倍,信号随时间变化加快
倍,所以它包含的频率分量增加
倍,也就是说频谱展开
倍。根据能量守恒定律,各频率分量的大小必然减少
倍。