傅里叶变换的性质---尺度变换特性

文章探讨了傅里叶变换的基本概念,指出信号在时域中的压缩等效于频域中的扩展,反之亦然。这种转换影响信号频率成分和能量分布,遵循能量守恒定律。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如果傅里叶变换

\mathcal{F}\left [ f(t) \right ]=F(\omega )

那么

\mathcal{F}\left [ f(at) \right ]=\frac{1}{\left | a \right |}F(\frac{\omega }{a})\; \; \; \; (1)

式中a为非零的实常数。

对于a=-1这种特殊情况,(1)式变为

\mathcal{F}\left [ f(-t) \right ]=F(-\omega)\; \; \; \; (2)

由上可见,信号在时域中压缩(a>1)等效于在频域中扩展;反之,信号在时域中扩展(a<1)则等于在频域中压缩。因为信号的波形压缩a倍,信号随时间变化加快a倍,所以它包含的频率分量增加a倍,也就是说频谱展开a倍。根据能量守恒定律,各频率分量的大小必然减少a倍。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值