【信号与系统 - 4】傅里叶变换的性质

  • 傅里叶变换有以下几个性质:
    ①线性特性
    ②时移性
    ③尺度变换
    ④频移性与调制定理
    ⑤对称性(互易特性)
    ⑥卷积
    ⑦时域微积分特性
    ⑧频域微积分特性
    ⑨Paseval定理(能量定理)

这一篇先涉及前4个性质,剩余的性质在下一篇

1 线性特性

在这里插入图片描述

2 时移(相移)性

已知:

F [ f ( t ) ] = F ( j w ) \mathscr{F}[f(t)]=F(jw) F[f(t)]=F(jw)

则:

F [ f ( t ± t 0 ) ] = F ( j w ) e ± j w t 0 \mathscr{F}[f(t\pm t_0)]=F(jw)e^{\pm jwt_0} F[f(t±t0)]=F(jw)e±jwt0

注:同加减

  • 说明: f ( t ) f(t) f(t) 延时 t 0 t_0 t0 得到的信号 f ( t − t 0 ) f(t-t_0) f(tt0) 的频谱幅度较之前者保持不变,但是相位滞后了 w t 0 wt_0 wt0

3 尺度变换

已知:

F [ f ( t ) ] = F ( j w ) \mathscr{F}[f(t)]=F(jw) F[f(t)]=F(jw)

则:

F [ f ( a t ) ] = 1 ∣ a ∣ F ( j w a ) \mathscr{F}[f(at)]=\frac{1}{|a|}F(j\frac{w}{a}) F[f(at)]=a1F(jaw)

  • 说明:信号在时域上压缩 ∣ a ∣ |a| a 倍(当 ∣ a ∣ > 1 |a| >1 a>1 时),却在频域上表现为伸展 ∣ a ∣ |a| a 倍,且幅度压低 1 ∣ a ∣ \frac{1}{|a|} a1 倍;信号在时域上拉伸 ∣ a ∣ |a| a 倍(当 0 < ∣ a ∣ < 1 0< |a|<1 0<a<1 时)相关情况与之相反

在这里插入图片描述

  • 实例:门函数 g τ ( t ) g_\tau(t) gτ(t),求 f ( t ) = 2 g τ 2 ( t ) + g τ 4 ( t + 3 τ 8 ) + g τ 4 ( t − 3 τ 8 ) f(t)=2g_{\frac{\tau}{2}}(t)+g_{\frac{\tau}{4}}(t+\frac{3\tau}{8})+g_{\frac{\tau}{4}}(t-\frac{3\tau}{8}) f(t)=2g2τ(t)+g4τ(t+83τ)+g4τ(t83τ) 的频谱函数
    已知:

F [ g τ ( t ) ] = τ S a ( w τ 2 ) \mathscr{F}[g_\tau(t)]=\tau Sa(\frac{w\tau}{2}) F[gτ(t)]=τSa(2wτ)

g τ 2 ( t ) g_{\frac{\tau}{2}}(t) g2τ(t) g τ 4 ( t ) g_{\frac{\tau}{4}}(t) g4τ(t) g τ ( t ) g_\tau(t) gτ(t) t t t 轴上压缩 a a a 倍的结果

F [ f ( t ) ] = 2 F [ g τ 2 ( t ) ] + F [ g τ 4 ( t + 3 τ 8 ) ] + F [ g τ 4 ( t − 3 τ 8 ) ] \mathscr{F}[f(t)]=2\mathscr{F}[g_{\frac{\tau}{2}}(t)]+\mathscr{F}[g_{\frac{\tau}{4}}(t+\frac{3\tau}{8})]+\mathscr{F}[g_{\frac{\tau}{4}}(t-\frac{3\tau}{8})] F[f(t)]=2F[g2τ(t)]+F[g4τ(t+83τ)]+F[g4τ(t83τ)]

则:

F [ f ( t ) ] = 2 F [ g τ 2 ( t ) ] + F [ g τ 4 ( t ) ] e j 3 w τ 8 + F [ g τ 4 ( t ) ] e − j 3 w τ 8 \mathscr{F}[f(t)]=2\mathscr{F}[g_{\frac{\tau}{2}}(t)]+\mathscr{F}[g_{\frac{\tau}{4}}(t)]e^{j\frac{3w\tau}{8}}+\mathscr{F}[g_{\frac{\tau}{4}}(t)]e^{-j\frac{3w\tau}{8}} F[f(t)]=2F[g2τ(t)]+F[g4τ(t)]ej83wτ+F[g4τ(t)]ej83wτ


其中(这里曾犯过错):

{ g τ 2 ( t ) = g τ ( 2 t ) a = 2 g τ 4 ( t ) = g τ ( 4 t ) a = 4 \begin{cases} g_{\frac{\tau}{2}}(t)=g_\tau(2t) & a=2\\ g_{\frac{\tau}{4}}(t)=g_\tau(4t) & a=4\\ \end{cases} {g2τ(t)=gτ(2t)g4τ(t)=gτ(4t)a=2a=4

则:

{ F [ g τ 2 ( t ) ] = F [ g τ ( 2 t ) ] = 1 2 F ( j w 2 ) F [ g τ 4 ( t ) ] = F [ g τ ( 4 t ) ] = 1 4 F ( j w 4 ) \begin{cases} \mathscr{F}[g_{\frac{\tau}{2}}(t)]=\mathscr{F}[g_\tau(2t)]=\frac{1}{2}F(\frac{jw}{2})\\ \mathscr{F}[g_{\frac{\tau}{4}}(t)]=\mathscr{F}[g_\tau(4t)]=\frac{1}{4}F(\frac{jw}{4})\\ \end{cases} {F[g2τ(t)]=F[gτ(2t)]=21F(2jw)F[g4τ(t)]=F[gτ(4t)]=41F(4jw)

代入 F [ f ( t ) ] \mathscr{F}[f(t)] F[f(t)]

F [ f ( t ) ] = 2 ∗ 1 2 F ( j w 2 ) + 1 4 F ( j w 4 ) e j 3 w τ 8 + 1 4 F ( j w 4 ) e − j 3 w τ 8 \mathscr{F}[f(t)]=2*\frac{1}{2}F(\frac{jw}{2})+\frac{1}{4}F(\frac{jw}{4})e^{j\frac{3w\tau}{8}}+\frac{1}{4}F(\frac{jw}{4})e^{-j\frac{3w\tau}{8}} F[f(t)]=221F(2jw)+41F(4jw)ej83wτ+41F(4jw)ej83wτ

F [ f ( t ) ] = τ S a ( w τ 4 ) + τ 4 S a ( w τ 8 ) e j 3 w τ 8 + τ 4 S a ( w τ 8 ) e − j 3 w τ 8 \mathscr{F}[f(t)]=\tau Sa(\frac{w\tau}{4})+\frac{\tau}{4}Sa(\frac{w\tau}{8})e^{j\frac{3w\tau}{8}}+\frac{\tau}{4}Sa(\frac{w\tau}{8})e^{-j\frac{3w\tau}{8}} F[f(t)]=τSa(4wτ)+4τSa(8wτ)ej83wτ+4τSa(8wτ)ej83wτ

合并同类项:

F [ f ( t ) ] = τ S a ( w τ 4 ) + τ 4 S a ( w τ 8 ) [ e j 3 w τ 8 + e − j 3 w τ 8 ] = τ S a ( w τ 4 ) + τ 4 S a ( w τ 8 ) ⋅ 2 c o s ( 3 w τ 8 ) \mathscr{F}[f(t)]=\tau Sa(\frac{w\tau}{4})+\frac{\tau}{4}Sa(\frac{w\tau}{8})[e^{j\frac{3w\tau}{8}}+e^{-j\frac{3w\tau}{8}}]=\tau Sa(\frac{w\tau}{4})+\frac{\tau}{4}Sa(\frac{w\tau}{8})\cdot 2cos(\frac{3w\tau}{8}) F[f(t)]=τSa(4wτ)+4τSa(8wτ)[ej83wτ+ej83wτ]=τSa(4wτ)+4τSa(8wτ)2cos(83wτ)

根据积化和差公式 s i n a ⋅ c o s b = 1 2 [ s i n ( a + b ) + s i n ( a − b ) ] sina\cdot cosb=\frac{1}{2}[sin(a+b)+sin(a-b)] sinacosb=21[sin(a+b)+sin(ab)],得:

F [ f ( t ) ] = τ S a ( w τ 4 ) + τ 2 s i n ( w τ 8 ) c o s ( 3 w τ 8 ) w τ 4 \mathscr{F}[f(t)]=\tau Sa(\frac{w\tau}{4})+\frac{\tau}{2}\frac{sin(\frac{w\tau}{8})cos(\frac{3w\tau}{8})}{\frac{w\tau}{4}} F[f(t)]=τSa(4wτ)+2τ4wτsin(8wτ)cos(83wτ)
= τ S a ( w τ 4 ) + τ 2 s i n ( w τ 2 ) + s i n ( − w τ 4 ) w τ 4 =\tau Sa(\frac{w\tau}{4})+\frac{\tau}{2}\frac{sin(\frac{w\tau}{2})+sin(-\frac{w\tau}{4})}{\frac{w\tau}{4}} =τSa(4wτ)+2τ4wτsin(2wτ)+sin(4wτ)
= τ S a ( w τ 4 ) + τ 2 [ 2 s i n ( w τ 2 ) w τ 2 − s i n ( w τ 4 ) w τ 4 ] =\tau Sa(\frac{w\tau}{4})+\frac{\tau}{2}[2\frac{sin(\frac{w\tau}{2})}{\frac{w\tau}{2}}-\frac{sin(\frac{w\tau}{4})}{\frac{w\tau}{4}}] =τSa(4wτ)+2τ[22wτsin(2wτ)4wτsin(4wτ)]
= τ S a ( w τ 4 ) + τ S a ( w τ 2 ) − τ 2 S a ( w τ 4 ) =\tau Sa(\frac{w\tau}{4})+\tau Sa(\frac{w\tau}{2})-\frac{\tau}{2}Sa(\frac{w\tau}{4}) =τSa(4wτ)+τSa(2wτ)2τSa(4wτ)
= τ 2 S a ( w τ 4 ) + τ S a ( w τ 2 ) =\frac{\tau}{2}Sa(\frac{w\tau}{4})+\tau Sa(\frac{w\tau}{2}) =2τSa(4wτ)+τSa(2wτ)


  • 尺度时移同时存在时

F [ f ( a t ± b ) ] = F f [ a ( t ± b a ) ] = 1 ∣ a ∣ F ( j w a ) e ± j b a w \mathscr{F}[f(at\pm b)]=\mathscr{F}{f[a(t\pm \frac{b}{a})]}=\frac{1}{|a|}F(j\frac{w}{a})e^{\pm j\frac{b}{a}w} F[f(at±b)]=Ff[a(t±ab)]=a1F(jaw)e±jabw

4 频移性

已知:

F [ f ( t ) ] = F ( j w ) \mathscr{F}[f(t)]=F(jw) F[f(t)]=F(jw)

则:

F [ f ( t ) e ± j w 0 t ] = F [ j ( w ∓ w 0 ) ] \mathscr{F}[f(t)e^{\pm jw_0t}]=F[j(w\mp w_0)] F[f(t)e±jw0t]=F[j(ww0)]

注:一加一减

  • 说明: f ( t ) f(t) f(t) 与 相移因子 e j w 0 t e^{jw_0t} ejw0t 相乘,等效与整个频谱延迟(右移) ω 0 ω_0 ω0

4-1 频移性的应用

①周期信号的傅里叶变换

  • 直流信号 f ( t ) = 1 f(t)=1 f(t)=1 的频移
    已知:

F [ f ( t ) ] = 2 π δ ( w ) \mathscr{F}[f(t)]=2\pi \delta(w) F[f(t)]=2πδ(w)

频移后:

F [ f ( t ) e ± j w 0 t ] = 2 π δ ( w ∓ w 0 ) \mathscr{F}[f(t)e^{\pm jw_0t}]=2\pi \delta(w\mp w_0) F[f(t)e±jw0t]=2πδ(ww0)
又因为:

{ e j w 0 t = c o s ( w 0 t ) + j s i n ( w 0 t ) e − j w 0 t = c o s ( w 0 t ) − j s i n ( w 0 t ) \begin{cases} e^{jw_0t}=cos(w_0t)+jsin(w_0t)\\ e^{-jw_0t}=cos(w_0t)-jsin(w_0t) \end{cases} {ejw0t=cos(w0t)+jsin(w0t)ejw0t=cos(w0t)jsin(w0t)

左边相进行相减相加可以获得单独的正弦分量与余弦分量

{ c o s ( w 0 t ) = e j w 0 t + e − j w 0 t 2 s i n ( w 0 t ) = e j w 0 t − e − j w 0 t 2 j \begin{cases} cos(w_0t)=\frac{e^{jw_0t}+e^{-jw_0t}}{2}\\ sin(w_0t)=\frac{e^{jw_0t}-e^{-jw_0t}}{2j} \end{cases} {cos(w0t)=2ejw0t+ejw0tsin(w0t)=2jejw0tejw0t

利用傅里叶变换的线性特性:

{ F [ c o s ( w 0 t ) ] = 2 π δ ( w − w 0 ) + 2 π δ ( w + w 0 ) 2 = π [ δ ( w − w 0 ) + δ ( w + w 0 ) ] F [ s i n ( w 0 t ) ] = 2 π δ ( w − w 0 ) + 2 π δ ( w + w 0 ) 2 j = j π [ δ ( w + w 0 ) − δ ( w − w 0 ) ] \begin{cases} \mathscr{F}[cos(w_0t)]=\frac{2\pi \delta(w-w_0)+2\pi \delta(w+w_0)}{2}=\pi[\delta(w-w_0)+\delta(w+w_0)]\\ \mathscr{F}[sin(w_0t)]=\frac{2\pi \delta(w-w_0)+2\pi \delta(w+w_0)}{2j}=j\pi[\delta(w+w_0)-\delta(w-w_0)]\\ \end{cases} {F[cos(w0t)]=22πδ(ww0)+2πδ(w+w0)=π[δ(ww0)+δ(w+w0)]F[sin(w0t)]=2j2πδ(ww0)+2πδ(w+w0)=[δ(w+w0)δ(ww0)]

在这里插入图片描述

  • 拓展到一般的周期信号:

{ F [ e ± j w 0 t ] = 2 π δ ( w ∓ w 0 ) f T ( t ) = ∑ n = − ∞ + ∞ F n e j n w 0 t \begin{cases} \mathscr{F}[e^{\pm jw_0t}]=2\pi \delta(w\mp w_0)\\ f_T(t)=\sum_{n=-\infty}^{+\infty}F_ne^{jnw_0t}\\ \end{cases} {F[e±jw0t]=2πδ(ww0)fT(t)=n=+Fnejnw0t

则周期信号的傅里叶变换为:

F [ f T ( t ) ] = 2 π ∑ n = − ∞ + ∞ F n δ ( w − n w 0 ) \mathscr{F}[f_T(t)]=2\pi\sum_{n=-\infty}^{+\infty}F_n\delta(w-nw_0) F[fT(t)]=2πn=+Fnδ(wnw0)

②信号的调制/解调

  • 无线电技术中,通常需要把信号频谱搬移到高频 ω c ω_c ωc 附近
    调制——用 f ( t ) f(t) f(t) 乘以相移因子 e j w c t e^{jw_ct} ejwct ,将低频信号频谱搬移到高频 ω c ω_c ωc 附近

解调——用 f ( t ) f(t) f(t) 乘以相移因子 e − j w c t e^{-jw_ct} ejwct ,将信号频谱搬移至 w = 0 w=0 w=0 附近,再通过滤波处理,恢复原低频信号

  • 注:工程技术上,不用因子 e ± j w c t e^{\pm jw_ct} e±jwct ,而使用高频的正、余弦信号作为因子,可实现频谱搬移
    由于:

c o s ( w 0 t ) = 1 2 ( e j w 0 t + e − j w 0 t ) cos(w_0t)=\frac{1}{2}(e^{jw_0t}+e^{-jw_0t}) cos(w0t)=21(ejw0t+ejw0t)
用高频余弦信号进行调制:

F [ f ( t ) c o s ( w c t ) ] = 1 2 { F [ f ( t ) e j w 0 t ] + F [ f ( t ) e − j w 0 t ] } \mathscr{F}[f(t)cos(w_ct)]=\frac{1}{2}\Big\{\mathscr{F}[f(t)e^{jw_0t}]+\mathscr{F}[f(t)e^{-jw_0t}]\Big\} F[f(t)cos(wct)]=21{F[f(t)ejw0t]+F[f(t)ejw0t]}

根据频移公式 F [ f ( t ) e ± j w 0 t ] = 2 π δ ( w ∓ w 0 ) \mathscr{F}[f(t)e^{\pm jw_0t}]=2\pi \delta(w\mp w_0) F[f(t)e±jw0t]=2πδ(ww0) 得:

F [ f ( t ) c o s ( w c t ) ] = 1 2 { F [ j ( w − w c ) ] + F [ j ( w + w c ) ] } \mathscr{F}[f(t)cos(w_ct)]=\frac{1}{2}\Big\{F[j(w-w_c)]+F[j(w+w_c)]\Big\} F[f(t)cos(wct)]=21{F[j(wwc)]+F[j(w+wc)]}

  • 14
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值