关于Cavium OCTEON 和intel DPDK在网络处理上的一些差别。
以下为转载。
转载请保留原出处以及作者联系方式,谢谢!
ylmaisiyuan@163.com
http://note.youdao.com/share/?id=248a6e3b877824484a02b507
OCTEON专为包处理而设计,有针对性地设计了大量硬件加速单元。其芯片设计团队曾设计Alpha芯片,在处理器设计本身也是很有水平。DPDK是在Intel X86架构以及Linux环境上的一套包处理软件解决方案。概括地讲包含几个主要方面,硬件访问层,用户空间的轮询模式驱动,mempool Lib,Ring Lib,mbuf Lib,Timer Lib。后面4个都是library,纯软件的。还有其它一些纯软件库以及X86架构特有的支持。
先说一些个人主观的感觉。我是先使用的OCTEON,后接触DPDK,所以不免有偏颇之处。插入一下DPDK的历史,DPDK是6Wind公司研发,6Wind最先把自己的软件移植在OCTEON上,然后出于移植到X86的需要,就照葫芦画瓢搞了一套DPDK。所以,如果熟悉OCTEON的话,看懂DPDK也就不费一袋烟的功夫。
OCTEON是一个专用处理器,DPDK尝试在一个通用处理器上实现OCTEON上做过的事情,所以对比分析对于系统的理解非常有意思。
OCTEON的manual难读,但是API简洁;DPDK的guide易读,但是API比较烦。觉得主要是X86没有OCTEON纯粹和优美。OCTEON里面把事情都抽象得恰到好处,所以这个抽象的过程很让人头疼,但是一旦把抽象模型建立好了,API就很纯粹,很优美。比如DPDK的mempool就很拖泥带水,OCTEON的FPA就很干脆利落。FPA就是FPA,很单纯,所以可以在软硬件之间互动。DPDK mempool的初始化竟然还要提供两个回调函数,晕。
mempool与FPA
mempool中的free object/buffer是通过ring来管理的,这个大概是为了借助ring的可以被多核同时操作的特性,来达到mempool可以被多核/多线程操作的目的。但是这样ring就占用了额外的内存,而且DPDK的ring是fixed size的。另外,mempool还设计了cache机制,以便减少访问ring的频率,最终是为了减少lock冲突。因为DPDK的ring不是完全的无锁设计。
那么在OCTEON的FPA中是如何解决上述问题的呢。首先,FPA是一个IO单元,对FPA的请求都可以通过一个IO读写操作来完成,包括来自软件(也就是core)和硬件(core以外的硬件单元PIP,PKO等)的请求都会被底层硬件排好序,因为硬件总线上不能同时传送两个请求,所以请求是一个跟一个来的,也就是相当于加了锁。所以FPA单元内部实现就无需考虑锁的问题,只管把buffer管理好就行了。FPA用了一个很聪明的办法,就是,把free buffer的管理信息保存在free buffer中,一个字节的内存都不会浪费。而且,FPA的pool容量不存在任何限制,运行过程中也可以往里增加新的free buffer,因为其内部管理通过list而不是数组/array。甚至可以把一个pool的buffer释放到另一个pool,只要这两个pool的buffer大小相同。FPA硬件支持预取操作,core发出预取操作,FPA把buffer地址送到core的scratch memory(data cache的一部分,也即是L1 cache),因此请求free buffer的代价仅仅是1个cycle。
插入一点,无论软件实现pool还是FPA实现,某个pool中管理的buffer并不要求来自于同一片连续内存。
另外,DPDK的mempool考虑到内存系统的优化,针对DRAM的channel、Rank、DIMM数量把free object的首地址做了专门的对齐,使得相邻的两个object/buffer不在同一个channel:Rank:DIMM上。这样可以把负载分配到多个channel和Rank,但是仍然有两个问题。第一,buffer不一定是顺序释放的,也就是说,程序运行一段时间后,对buffer的访问顺序可能是1,3,5,而不一定是1,2,3,4,5;第二,在多核环境中,系统中可能有多个mempool,单个mempool对内存的优化可能会互相抵消。
针对内存访问的问题,OCTEON在DRAM控制器中做了优化。首先,OCTEON是一个多核环境,同时会有很多DRAM访问请求。DRAM根据channel等信息自动对请求做排序和乱序处理。这个对软件是完全透明的。估计Intel的处理器也会做类似的优化。
废了一袋烟的功夫,改天再写。to be continued...
PIP/PKO与rte_ether
说X86的网络接口就不能不提这堆缩写了,如果没有了这堆feature,那么X86做包处理就没戏了。并不是每个feature都同时需要。
RSS, Receive Side Scaling
VMDQ, Virtual Machine Device queue
DCB, Data Center Bridging, guarantee lossless delivery, congestion notification, priority-based flow control, and priority groups.
DCA,
Direct Cache Access
Intel ethernet controller无论收发包,free buffer管理都是采用descriptor ring的方式,这样带来一个问题,就是,软件需要考虑何时向哪个port的receive ring中添加buffer。如果添加得多,添加到某端口receive ring的buffer不能被其它端口共享,造成浪费;如果添加得少,就可能造成瞬间的buffer耗尽而丢包。很难平衡,最简单还是多浪费内存了事。OCTEON中,PIP收到报文后才从FPA申请free buffer,PIP中只预取少量free buffer,所以free buffer任何时候都可以为所有端口和所有软硬件单元候命。
在OCTEON中,PIP收包放入POW队列,core只管从那个group接收报文/wqe,而不是直接请求某个端口/port的报文,所以只要有报文/消息/wqe要处理就不会出现无效的轮询。在X86上,不可避免地需要挨个端口轮询,不管端口有没有收到报文。
DPDK在发送报文的时候,检查此前被用过的tx descriptor是否有关联的rte_mbuf,如果有就free。这是一个很聪明的做法,既避免了中断(用于controller通知软件报文已发送完成),又无需定时去轮询descriptor ring。由于这个buffer释放动作是纯软件的,当配合DPDK的indirect buffer使用时,就很容易解决多播中遇到的报文data buffer释放的问题。发送报文API是否有考虑到这一点还得等待查看代码。
在OCTEON中,软件可以选择让硬件释放buffer或者发送完成后通知软件,再由软件来释放buffer。针对多播的问题,要么选择copy报文,要么做引用计数器,但是硬件不能理解引用计数器,所以如果用引用计数器就得软件来释放buffer。PKO通知软件发送完成的方法有两种,一是内存地址置零,这需要软件轮询或查询,二是PKO送出一个wqe,这个感觉有掉绕,为了解决buffer释放问题,还得需要另一个wqe。不管那种方法,都不太方便,在新的OCTEON上是否有解决这个问题,那位清楚的请告知。
Timer
DPDK的timer实现原理没有在文档中描述。不过有一点是明确的,timer依赖于lcore的软件周期性地调用rte timer manage()函数来检查是否有timer超时,这个造成了跟轮询收包同样的问题,浪费CPU资源
,不过也只能这样,确实没有什么好办法。至于实现算法有待分析代码,这个也跟效率有直接关系。
同样由于受益于硬件timer模块和POW单元,OCTEON中的timer可以同时保证精度和效率,没无挑剔。
OCTEON通过POW单元统一管理所有消息/报文,core使用唯一的get_work接口处理所有事情,这样做有几方面好处,第一是避免无效轮询造成的CPU浪费,第二是优先级可以集中同时约束不同种类的事情。想象一下,如果用单独的接口分别轮询收包和timer,要实现高优先级的timer消息优先被处理,低优先级timer消息与接收的报文统一按发生的时间顺序处理,这是一个多么麻烦和费CPU的事情。
DPDK里面疑惑的地方
1. 为什么example中,RX descriptor比TX descriptor少?
#define RTE_TEST_RX_DESC_DEFAULT 128
#define RTE_TEST_TX_DESC_DEFAULT 512
2. example中竟然单独用unsigned定义变量,没有int,这样规范吗?这样定义出来到底是几位的?
Q&A
热情的长风2013-04-17 15:20:10[回复] [删除] [举报]
支持永龙2372,我对其硬件访问层比较感兴趣:如何在用户态直接收包的?能绕过内核?我觉得这是性能中很重要的问题,其他的库,都是浮云。。
>> 在用户态能访问寄存器以及rx/tx descriptor ring就可以收发包了,这个Linux是支持的,比如mmap技术。BTW,DPDK只是利用了Linux的一些现成技术。这个在tilera上都是这么用的,OCTEON的SDK也支持这种模式。其它的实现对性能也很重要,比如poll mode driver。引用一位朋友前几天说的话,很多个小优化最终形成很大的差距。
转载请保留原出处以及作者联系方式
,谢谢!
ylmaisiyuan@163.com