关于Python装饰器——@lru_cache(None)的使用

在Python中,@lru_cache(maxsize, typed=False)是一个装饰器,用于实现一个简单的最近最少使用(Least Recently Used, LRU)缓存策略。当你希望缓存一个函数的计算结果,以便在后续调用时能够更快地返回结果时,这个装饰器就非常有用了。

@lru_cache(None) 的具体用法和含义如下:

  1. maxsize=None:这意味着缓存将无限制地增长。对于大多数应用来说,这通常不是一个好主意,因为它可能导致内存使用过多。但在某些情况下,如果你确定缓存的内容不会太多,或者你希望缓存所有结果,那么可以使用 None
  2. typed=False:这个参数决定函数参数的类型是否应该被考虑在内。当 typed=True 时,函数参数的类型也会被考虑在内,这意味着 (1, 2)(1.0, 2.0) 会被视为不同的调用,即使它们具有相同的值。默认情况下,typed=False,所以只有参数的值会被考虑。

例如,假设你有一个计算斐波那契数列的函数:

from functools import lru_cache  
  
@lru_cache(None)  
def fibonacci(n):  
    if n < 2:  
        return n  
    return fibonacci(n-1) + fibonacci(n-2)

使用 @lru_cache(None) 后,当你第一次计算 fibonacci(10) 时,所有从 fibonacci(0)fibonacci(9) 的中间结果都会被缓存起来。如果你再次调用 fibonacci(10),这些中间结果就会被直接从缓存中取出,而不需要重新计算,从而大大提高了效率。

但是请注意,对于非常大的输入值或频繁变化的输入值,无限制的缓存可能会导致内存问题。在这种情况下,你可能需要设置一个合适的 maxsize 值来限制缓存的大小。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hi,你好啊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值