在Python中,@lru_cache(maxsize, typed=False)
是一个装饰器,用于实现一个简单的最近最少使用(Least Recently Used, LRU)缓存策略。当你希望缓存一个函数的计算结果,以便在后续调用时能够更快地返回结果时,这个装饰器就非常有用了。
@lru_cache(None)
的具体用法和含义如下:
maxsize=None
:这意味着缓存将无限制地增长。对于大多数应用来说,这通常不是一个好主意,因为它可能导致内存使用过多。但在某些情况下,如果你确定缓存的内容不会太多,或者你希望缓存所有结果,那么可以使用None
。typed=False
:这个参数决定函数参数的类型是否应该被考虑在内。当typed=True
时,函数参数的类型也会被考虑在内,这意味着(1, 2)
和(1.0, 2.0)
会被视为不同的调用,即使它们具有相同的值。默认情况下,typed=False
,所以只有参数的值会被考虑。
例如,假设你有一个计算斐波那契数列的函数:
from functools import lru_cache
@lru_cache(None)
def fibonacci(n):
if n < 2:
return n
return fibonacci(n-1) + fibonacci(n-2)
使用 @lru_cache(None)
后,当你第一次计算 fibonacci(10)
时,所有从 fibonacci(0)
到 fibonacci(9)
的中间结果都会被缓存起来。如果你再次调用 fibonacci(10)
,这些中间结果就会被直接从缓存中取出,而不需要重新计算,从而大大提高了效率。
但是请注意,对于非常大的输入值或频繁变化的输入值,无限制的缓存可能会导致内存问题。在这种情况下,你可能需要设置一个合适的 maxsize
值来限制缓存的大小。