【风控】风控模型体系搭建

一、简介

信贷产品从获客到回款,贯穿 营销(Acquisition)→ 贷前(Pre‑loan)→ 贷中(In‑loan)→ 贷后(Post‑loan)四个阶段。
每个阶段均面临不同风险:

  • 营销阶段:如何提高获客转化、剔除低质或欺诈流量
  • 贷前阶段:在放款前识别并拦截高风险申请
  • 贷中阶段:监控存续账户行为,防止资产恶化
  • 贷后阶段:催收管理与回款优化

整体流程图示:

营销 ──> 贷前 ──> 贷中 ──> 贷后
    ↑                  ↓
  流量             回款/催收

二、营销阶段

2.1 目标

  • 精准触达潜在优质客户
  • 提升营销活动 ROI,降低获客成本
  • 过滤异常或恶意流量

2.2 关键模型

模型主要作用常用算法关键特征
营销响应模型预测客户对营销活动(短信/推送/广告)的响应概率逻辑回归、XGBoost、DNN、Uplift模型用户画像、点击/浏览行为、渠道来源
流量筛选模型初步剔除僵尸用户及潜在欺诈流量规则引擎 + 轻量级分类模型IP、设备指纹、访问频次、代理/VPN 信息

2.3 营销响应模型细节

  1. 特征工程
    • 用户基础:性别、年龄、地区、设备类型
    • 行为画像:24h/7d 浏览量、活跃时段、历史转化
    • 渠道属性:广告位、触达方式、投放预算
  2. 建模与评估
    • 划分训练/验证集,使用 AUC、KS、Lift Chart 评估
    • 持续 A/B Testing,实时监测线上效果

2.4 流量筛选模型细节

  1. 规则层
    • 黑名单过滤:历史欺诈账户、异常设备号
    • 阈值过滤:单日点击数、留存时长、跳出率
  2. 模型层
    • 特征:设备变更频率、IP 段分布、Account Fragmentation
    • 算法:轻量级决策树 / 逻辑回归,实时评分

三、贷前阶段

3.1 目标

  • 在放款前对申请进行多维度风险识别
  • 拦截高风险/欺诈申请,降低首贷不良率

3.2 关键模型

模型主要作用常用算法关键特征
反欺诈模型识别身份造假、团伙欺诈、资料作假等随机森林、LightGBM、GNN、图谱分析设备指纹、通讯录网络、注册信息、行为轨迹
信用评分模型评估客户还款意愿与能力、决定授信额度逻辑回归、XGBoost、深度学习征信记录、还款历史、收入水平、多头负债、外部数据
规则引擎(补充)硬性筛选:黑名单、限制规则规则库黑白名单、地域限制、高风险职业等

3.3 反欺诈模型细节

  1. 图谱分析
    • 构建申请人与设备/联系人/IP 的异构图
    • 利用 GNN 或 PageRank 识别团伙网络
  2. 监督学习
    • 正负样本:历史欺诈 vs 正常放款
    • 特征:申请路径、设备关联度、通讯录共现、交易轨迹
    • 指标:召回率(Fraud Recall)、精确率(Precision)

3.4 信用评分模型细节

  1. 征信数据整合
    • 人行征信、第三方征信(芝麻分、运营商报告)
    • 近 12–24 个月借还记录、逾期次数/天数
  2. 本地化特征
    • 行业景气度、节假日/工资日还款行为
    • 社交关系、联系人特征
  3. 模型校准
    • PSI(Population Stability Index)监控分数分布
    • 定期重训练、灰度上线

四、贷中阶段

4.1 目标

  • 在贷款存续期间持续监控客户风险
  • 对账户进行动态管理(调额、冻结、降额等)
  • 实时拦截套现、异常消费等行为

4.2 关键模型

模型主要作用常用算法关键特征
行为评分模型(BS)定期评估客户风险等级,用于账户管理与调额策略滑动窗口特征 + XGBoost、LightGBM还款记录、消费/提现频次、账户余额、逾期趋势
交易风险模型(TRM)实时识别异常交易(套现、洗钱、高风险商户等)规则引擎 + 异常检测(Isolation Forest、AutoEncoder)消费金额、商户类别、交易时间/地点、设备指纹

4.3 行为评分模型细节

  1. 时间窗口特征
    • 近 7/30/90 天的还款率、消费金额、提现金额
    • 最大连续逾期天数、逾期频次
  2. 动态分群
    • K‑Means 或 DBSCAN 对客户分层,制定分层策略
  3. 策略联动
    • 高风险账户:自动触发风控提醒、降额/冻结
    • 中低风险:按计划提升额度、优惠激励

4.4 交易风险模型细节

  1. 规则库
    • 套现场景:小额多次提现 + 关键商户组合
    • 洗钱特征:交易链路、异常终端
  2. 异常检测
    • 用自编码器重构误差或孤立森林异类分数判定风险
    • 实时评分 + 离线模型定期迭代

五、贷后阶段

5.1 目标

  • 提升整体回款率,降低不良损失
  • 智能化催收,最优成本/效果

5.2 关键模型

模型主要作用常用算法关键特征
还款预测模型预测客户是否能够/何时还款,用于分层催收策略分类(XGBoost、LightGBM)、回归逾期天数、剩余期数、历史还款行为、收入变化
失联预估模型预测客户联系难度,用于安排最优催收渠道多分类模型、LSTM 序列模型通话记录、位置活跃、App 登录行为、社交网络
催收策略优化模型针对不同层级客户制定个性化催收路径(短信→电话→上门)强化学习、策略树、A/B 测试催收成本、催收效果、客户反馈

5.3 还款预测模型细节

  1. 标签定义
    • 二分类:是否逾期超过 N 天
    • 回归:逾期天数或预计还款金额
  2. 特征工程
    • 账户画像:借款金额/期数、剩余本金、还款计划
    • 客户动态:近 30 天收入提现波动、平台活跃度
  3. 评估与应用
    • 精度(Accuracy)、召回、G-mean、F1
    • 基于分层结果自动推送定制化催收素材

5.4 失联预估 & 催收策略

  1. 失联预估
    • 序列建模:LSTM 处理时间序列通话/登录数据
    • 输出:高/中/低可联系概率
  2. 催收策略
    • 强化学习:状态(客户分层、失联概率)→ 动作(渠道、频次)→ 奖励(回款/成本)
    • 持续 A/B 测试验证策略改进效果
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

油泼辣子多加

感谢大佬!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值