一、简介
信贷产品从获客到回款,贯穿 营销(Acquisition)→ 贷前(Pre‑loan)→ 贷中(In‑loan)→ 贷后(Post‑loan)四个阶段。
每个阶段均面临不同风险:
- 营销阶段:如何提高获客转化、剔除低质或欺诈流量
- 贷前阶段:在放款前识别并拦截高风险申请
- 贷中阶段:监控存续账户行为,防止资产恶化
- 贷后阶段:催收管理与回款优化
整体流程图示:
营销 ──> 贷前 ──> 贷中 ──> 贷后
↑ ↓
流量 回款/催收
二、营销阶段
2.1 目标
- 精准触达潜在优质客户
- 提升营销活动 ROI,降低获客成本
- 过滤异常或恶意流量
2.2 关键模型
模型 | 主要作用 | 常用算法 | 关键特征 |
---|
营销响应模型 | 预测客户对营销活动(短信/推送/广告)的响应概率 | 逻辑回归、XGBoost、DNN、Uplift模型 | 用户画像、点击/浏览行为、渠道来源 |
流量筛选模型 | 初步剔除僵尸用户及潜在欺诈流量 | 规则引擎 + 轻量级分类模型 | IP、设备指纹、访问频次、代理/VPN 信息 |
2.3 营销响应模型细节
- 特征工程
- 用户基础:性别、年龄、地区、设备类型
- 行为画像:24h/7d 浏览量、活跃时段、历史转化
- 渠道属性:广告位、触达方式、投放预算
- 建模与评估
- 划分训练/验证集,使用 AUC、KS、Lift Chart 评估
- 持续 A/B Testing,实时监测线上效果
2.4 流量筛选模型细节
- 规则层
- 黑名单过滤:历史欺诈账户、异常设备号
- 阈值过滤:单日点击数、留存时长、跳出率
- 模型层
- 特征:设备变更频率、IP 段分布、Account Fragmentation
- 算法:轻量级决策树 / 逻辑回归,实时评分
三、贷前阶段
3.1 目标
- 在放款前对申请进行多维度风险识别
- 拦截高风险/欺诈申请,降低首贷不良率
3.2 关键模型
模型 | 主要作用 | 常用算法 | 关键特征 |
---|
反欺诈模型 | 识别身份造假、团伙欺诈、资料作假等 | 随机森林、LightGBM、GNN、图谱分析 | 设备指纹、通讯录网络、注册信息、行为轨迹 |
信用评分模型 | 评估客户还款意愿与能力、决定授信额度 | 逻辑回归、XGBoost、深度学习 | 征信记录、还款历史、收入水平、多头负债、外部数据 |
规则引擎(补充) | 硬性筛选:黑名单、限制规则 | 规则库 | 黑白名单、地域限制、高风险职业等 |
3.3 反欺诈模型细节
- 图谱分析
- 构建申请人与设备/联系人/IP 的异构图
- 利用 GNN 或 PageRank 识别团伙网络
- 监督学习
- 正负样本:历史欺诈 vs 正常放款
- 特征:申请路径、设备关联度、通讯录共现、交易轨迹
- 指标:召回率(Fraud Recall)、精确率(Precision)
3.4 信用评分模型细节
- 征信数据整合
- 人行征信、第三方征信(芝麻分、运营商报告)
- 近 12–24 个月借还记录、逾期次数/天数
- 本地化特征
- 行业景气度、节假日/工资日还款行为
- 社交关系、联系人特征
- 模型校准
- PSI(Population Stability Index)监控分数分布
- 定期重训练、灰度上线
四、贷中阶段
4.1 目标
- 在贷款存续期间持续监控客户风险
- 对账户进行动态管理(调额、冻结、降额等)
- 实时拦截套现、异常消费等行为
4.2 关键模型
模型 | 主要作用 | 常用算法 | 关键特征 |
---|
行为评分模型(BS) | 定期评估客户风险等级,用于账户管理与调额策略 | 滑动窗口特征 + XGBoost、LightGBM | 还款记录、消费/提现频次、账户余额、逾期趋势 |
交易风险模型(TRM) | 实时识别异常交易(套现、洗钱、高风险商户等) | 规则引擎 + 异常检测(Isolation Forest、AutoEncoder) | 消费金额、商户类别、交易时间/地点、设备指纹 |
4.3 行为评分模型细节
- 时间窗口特征
- 近 7/30/90 天的还款率、消费金额、提现金额
- 最大连续逾期天数、逾期频次
- 动态分群
- K‑Means 或 DBSCAN 对客户分层,制定分层策略
- 策略联动
- 高风险账户:自动触发风控提醒、降额/冻结
- 中低风险:按计划提升额度、优惠激励
4.4 交易风险模型细节
- 规则库
- 套现场景:小额多次提现 + 关键商户组合
- 洗钱特征:交易链路、异常终端
- 异常检测
- 用自编码器重构误差或孤立森林异类分数判定风险
- 实时评分 + 离线模型定期迭代
五、贷后阶段
5.1 目标
- 提升整体回款率,降低不良损失
- 智能化催收,最优成本/效果
5.2 关键模型
模型 | 主要作用 | 常用算法 | 关键特征 |
---|
还款预测模型 | 预测客户是否能够/何时还款,用于分层催收策略 | 分类(XGBoost、LightGBM)、回归 | 逾期天数、剩余期数、历史还款行为、收入变化 |
失联预估模型 | 预测客户联系难度,用于安排最优催收渠道 | 多分类模型、LSTM 序列模型 | 通话记录、位置活跃、App 登录行为、社交网络 |
催收策略优化模型 | 针对不同层级客户制定个性化催收路径(短信→电话→上门) | 强化学习、策略树、A/B 测试 | 催收成本、催收效果、客户反馈 |
5.3 还款预测模型细节
- 标签定义
- 二分类:是否逾期超过 N 天
- 回归:逾期天数或预计还款金额
- 特征工程
- 账户画像:借款金额/期数、剩余本金、还款计划
- 客户动态:近 30 天收入提现波动、平台活跃度
- 评估与应用
- 精度(Accuracy)、召回、G-mean、F1
- 基于分层结果自动推送定制化催收素材
5.4 失联预估 & 催收策略
- 失联预估
- 序列建模:LSTM 处理时间序列通话/登录数据
- 输出:高/中/低可联系概率
- 催收策略
- 强化学习:状态(客户分层、失联概率)→ 动作(渠道、频次)→ 奖励(回款/成本)
- 持续 A/B 测试验证策略改进效果