训练集、测试集loss容易出现的问题总结

 

训练集、测试集loss容易出现的问题总结

1、

train loss 不断下降,test loss不断下降:说明网络仍在学习;

train loss 不断下降,test loss趋于不变:说明网络过拟合;

train loss 趋于不变,test loss不断下降:说明数据集100%有问题;

train loss 趋于不变,test loss趋于不变:说明学习遇到瓶颈,需要减小学习率或批量数目;或者是数据集有问题(数据集标注错误数据比较多)

train loss 不断上升,test loss不断上升:说明网络结构设计不当,训练超参数设置不当,数据集经过清洗等问题。

2、训练时损失出现nan的问题,可能导致梯度出现nan的三个原因:

  梯度爆炸。也就是说梯度数值超出范围变成nan. 通常可以调小学习率、加BN层或者做梯度裁剪来试试看有没有解决。

  损失函数或者网络设计。比方说,出现了除0,或者出现一些边界情况导致函数不可导,比方说log(0)、sqrt(0).

  脏数据。可以事先对输入数据进行判断看看是否存在nan.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值