背包dp之多重背包

题目链接:

hdu2844


题意:

有n种价值不同的硬币,他们的数量有限但不相同。现在要求出硬币组合,可组合出多少种不同价格。


题目输入输出:

Input
The input contains several test cases. The first line of each test case contains two integers n(1 ≤ n ≤ 100),m(m ≤ 100000).The second line contains 2n integers, denoting A1,A2,A3…An,C1,C2,C3…Cn (1 ≤ Ai ≤ 100000,1 ≤ Ci ≤ 1000). The last test case is followed by two zeros.

Output
For each test case output the answer on a single line.

Sample Input
3 10
1 2 4 2 1 1
2 5
1 4 2 1
0 0

Sample Output
8
4


思路:

就是转化成一个多重背包。

01 背包
有n 种不同的物品,每个物品有两个属性,size 体积,value 价值,每种物品只有一个,现在给一个容量为 w 的背包,问最多可带走多少价值的物品。

int f[w+1];   //f[x] 表示背包容量为x 时的最大价值  
for (int i=0; i<n; i++)  
    for (int j=w; j>=size[i]; j--)  
        f[j] = max(f[j], f[j-size[i]]+value[i]); //逆序

完全背包

如果物品不计件数,就是每个物品有无数件的话,稍微改下即可 。

for (int i=0; i<n; i++)  
    for (int j=size[i]; j<=w; j++)  
        f[j] = max(f[j], f[j-size[i]]+value[i]);  //正序

多重背包

多重背包既是每个物体有一定的重量w和价值v,并且有一定的数量cnt,设m为背包可包含重量;即转化成01背包和完全背包。模板如下:

#include <iostream>
#include <map>
#include <math.h>
#include <algorithm>
#include <vector>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <set>
using namespace std;
int n,m,a[105],num[105],dp[100005];
void comdp(int w,int v)
{
    int i;
    for(i=w; i<=m; i++)
        dp[i]=max(dp[i],dp[i-w]+v);
}
void zeroone(int w,int v)
{
    int i;
    for(i=m; i>=w; i--)
        dp[i]=max(dp[i],dp[i-w]+v);
}
void multidp(int w,int v,int cnt)//此时开始多重背包,dp[i]表示背包中重量为i时所包含的最大价值
{
    if(cnt*w>=m)//此时相当于物品数量无限进行完全背包
    {
        comdp(w,v);
        return;
    }
    int k=1;//否则进行01背包转化,就是把该种物品的每一个当做一种物品来处理,但
           //是这样的话,就要循环n次(n为该种物品的个数),可以用关于二进制的定
           //理去简化,具体由下面的定理可得
    while(k<=cnt)
    {
        zeroone(k*w,k*v);
        cnt-=k;
        k*=2;
    }
    zeroone(cnt*w,cnt*v);
    return ;
}

定理:一个正整数n可以被分解成1,2,4,…,2^(k-1),n-(2^k-1)(k是满足n-(2^k-1)>0的最大整数)的形式,且1~n之内的所有整数均可以唯一表示成1,2,4,…,2^(k-1),n-(2^k-1)中某几个数的和的形式。
证明如下:

(1) 数列1,2,4,…,2^(k-1),n-(2^k-1)中所有元素的和为n,所以若干元素的和的范围为:[1, n];

(2)如果正整数t<= 2^k – 1,则t一定能用1,2,4,…,2^(k-1)中某几个数的和表示,这个很容易证明:我们把t的二进制表示写出来,很明显,t可以表示成n=a0*2^0+a1*2^1+…+ak*2^(k-1),其中ak=0或者1,表示t的第ak位二进制数为0或者1.

(3)如果t>=2^k,设s=n-(2^k-1),则t-s<=2^k-1,因而t-s可以表示成1,2,4,…,2^(k-1)中某几个数的和的形式,进而t可以表示成1,2,4,…,2^(k-1),s中某几个数的和(加数中一定含有s)的形式。


代码:

#include <stdio.h>
#include <string.h>
int max(int x,int y)
{
    return  x>y?x:y;
}
int n,m;
int dp[100002];
int a[102];
int c[102];
void ZeroOnePack(int v,int w)
{
    int i;
    for(i=m;i>=w;i--)
    {
        dp[i]=max(dp[i],dp[i-w]+v); 
    }
}
void ComPack(int v,int w)
{
    int i;
    for(i=w;i<=m;i++)
    {
        dp[i]=max(dp[i],dp[i-w]+v); 
    }
}
void MultiplePack(int v,int w,int c)
{
    if(m<=c*w)       //多重背包 
    {
        ComPack(v,w); 
    }
    else            //转化成01背包 
    {
        int i=1;
        while(i<=c)
        {
            ZeroOnePack(v*i,w*i);
            c-=i;
            i*=2;
        }
        ZeroOnePack(c*v,c*w);   
    }
}
int main()
{
    int i,j;
    while(scanf("%d %d",&n,&m)!=EOF)
    {
        if(n==0&&m==0)break;
        for(i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
        }
        for(i=1;i<=n;i++)
        {
            scanf("%d",&c[i]);
        }
        memset(dp,0,sizeof(dp));
        for(i=1;i<=n;i++)
        {
            MultiplePack(a[i],a[i],c[i]);
        }
        int sum=0;
        for(i=1;i<=m;i++)
        {
            if(dp[i]==i)sum++;
        }
        printf("%d\n",sum);
    }
    return 0;
} 
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值