动态规划入门-最大子段

本文介绍了一道动态规划题目,探讨如何找到一个数组中的最大子段。文章从解题思路出发,详细解释了动态规划的运用,并给出了不同水平的代码示例,包括初始化状态dp[0]=a[0]。
摘要由CSDN通过智能技术生成

题目and教程来源

http://www.51nod.com/tutorial/course.html#!courseId=2

输入

第1行:整数序列的长度N(2 <= N <= 50000)
第2 - N + 1行:N个整数(-10^9 <= A[i] <= 10^9)

输出

输出最大子段和。

输入示例

6
-2
11
-4
13
-5
-2

输出示例

20

解题思路

1、这道题还是一道动态规划的题目呢。。。。。。

首先我们看看怎么找状态转移方程吧~我们设dp[i]就是选取这个点为终点的最大和噢。
dp[i]=max(dp[i-1]+a[i],a[i]);
意思就是,要了你如果得到的和比不要你,我单独作为起点再开一个子序列所得到的和要大,那么我就不要你了。。。。。。
当然了,稍作思考,其实也可以写成
dp[i]=max(dp[i-1],0)+a[i];,因为dp[i-1]如果是大于0的话,那么加上我自己本身,肯定会比我自身带的和要大啊(蛮干和有大腿的意思)

2、找一下初值

dp[0]=a[0],因为你没得选嘛


代码展示:

一般般的代码

#include<iostream>
using namespace std;
long long dp[50000];
int a[50000];
int main()
{
	int n=0;
	while(cin>>n)
	{
		for(int i=0;i<n;i++)
		{
			cin>>a[i];
		}
		dp[0]=a[0];
		for(int i=1;i<n;i++)
		{
			if(dp[i-1]+a[i]<a[i])
			dp[i]=a[i];
			else
			dp[i]=dp[i-1]+a[i];
		}
		long long max=dp[0];
		for(int i=1;i<n;i++)
		{
			if(dp[i]>max)
			max=dp[i];
		}
		cout<<max<<endl;
	}
}



好一点点的

#include<iostream>
using namespace std;
int a[50000];
int main()
{
	int n=0;
	while(cin>>n)
	{
		for(int i=0;i<n;i++)
		{
			cin>>a[i];
		}
		long long max=a[0];
		long long answer=0;
		for(int i=1;i<n;i++)
		{
			if(max<0)
			max=a[i];
			else
			max=max+a[i];
			if(max>answer)
			answer=max;
		}
		cout<<answer<<endl;
	}
 } 

我觉得用的资源更少的代码

#include<iostream>
using namespace std;
int main()
{
	int n=0;
	while(cin>>n)
	{
		int data=0;
		long long max=0;
		long long answer=0;
		cin>>data;
		max=data;
		answer=data;
		n--;
		while(n--)
		{
			cin>>data;
			if(max>0)
			max=max+data;
			else
			max=data;
			if(max>answer)
			answer=max;
		}
		cout<<answer<<endl;
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值