动态规划——最大子段和问题

动态规划——最大子段和问题

问题:

给定n个整数(可以为负数)的序列(a1 , a2 , …, an),求其最大子段和(连续的某个子串)。

分析:

蛮力法的话,O(n2)

分治法,将序列分为左右两部分分别求最大子段和,从分界点开始向两边分别找最大子段和再合并,取最大即可。复杂度递推式:T(n) = 2T(n/2) + O(n) = O(nlogn)

动态规划,最优子结构的构造有点小技巧。

最优子结构:b[j],表示到j结束的所有子段中最大的那个,起始点从1到j都有可能,如果遍历一遍j,就可以覆盖所有子问题。(乍一看似乎就是一个蛮力,但是由于这题子问题间存在递推关系,相当于用前面计算过的计算新的,正体现动态规划的本质,空间换时间,减少重复计算)b[j]意味着至少j被选中了。

确定递推关系:对于j-1而言,有两种选择,选(继续向左扩张子串)或者不选(子串就是a[j]了),也就是说b[j] = max{a[j],b[j-1]+a[j]}。最终取b中最大的那个即可。

代码:

#include <bits/stdc++.h>

using namespace std;

// 计算序列的最大子段和
// 输入:序列长度n,序列a,子结构矩阵b,结果记录矩阵c
// 输出:最大子段和及其长度
int MaxSum(int n, int a[], int b[], int c[]){
    // 初始化
    b[0] = 0;
    // 计算
    for(int j = 1;j <= n;j++){
        b[j] = max(a[j], b[j-1] + a[j]);
        if(a[j] > b[j-1] + a[j]){
            c[j] = j;
        }else{
            c[j] = c[j-1];
        }
    }
    // 求最大值
    int maxb = -10000,end = -1;
    for(int i = 1;i <= n;i++){
        if(maxb < b[i]){
            maxb = b[i];
            end = i;
        }
    }
    // 输出结果
    for(int i = c[end];i <= end;i++)
        cout<<a[i]<<" ";
    cout<<endl;
    return maxb;
}

int main(){
    int a[8] = {0, 2, -5, 8, 11, -3, 4, 6};
    int c[8],b[8];
    memset(c, 0, sizeof(c));
    memset(b, 0, sizeof(b));
    cout<<MaxSum(8, a, b, c)<<endl;
}

复杂度:

时间复杂度:O(n)

空间复杂度:O(n)

  • 1
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值