KDD‘20 Best Paper | 推荐系统中采样测试的误区

阅读更多,欢迎关注公众号:论文收割机(paper_reader)
因为排版问题,很多图片和公式无法直接显示,欢迎关注我们的公众号点击目录来阅读原文。

CSDN上排版不好,可以直接点击链接阅读原文

Walid Krichene and Steffen Rendle. 2020. On Sampled Metrics for Item Recommendation. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD '20).  DOI:https://doi.org/10.1145/3394486.340322
 

引言

 

这篇论文是推荐系统大佬Rendle的新作,在投KDD之前,就已经挂在网上了。这篇论文主要对现在推荐系统(recommender system)中常用的基于sample的evaluation方法进行探究。基于sample的evaluation其实是为了解决计算资源不足的问题。

 

尤其在推荐系统中,最终测试的时候一般需要对item进行排序(ranking),然后计算出rank at K的score,比如NDCG@K,Recall@K。item数量往往会很多,比如benchmark的item数量,一般10k级别的,而一些企业级的item数量可能达到million级的。

 

所以如果每个user ranking的结果都要计算所有对item的score,对于计算资源的要求是非常高的。因此,evaluation的时候,例如在NCF[He, Xiangnan, et al. "Neural collaborative filtering." ]中,往往先sample出100个negative items,再与ground truth item一起进行ranking排序,如果ground truth item排序高于sample出来的negative items,则表示模型的performance好,若比sample出来的negative item ranking低,则表示模型的performance差。

 

这种基于sample的evaluation方法,按照通常的思路,如果多做几次实验,从期望上来看可以得到与完整测试(full evaluation)一样的score。但是通过这篇文章,rendle对这种Sampled Metrics提出了质疑,并且从理论和实验中得出了sampled metrics和exact metrics之间可能并不一致的结论,同时还设计了校正的算法(correction algorithm)。

 

可以说,这篇文章,是推荐系统领域一个非常重要的工作,部分推翻了已有的很多工作的结论,并且也为以后的工作提供了理论上的支持。

 

Evaluation Metrics

 

 

推荐系统中对模型的evaluation一般是基于ranking的,即一个推荐算法,对每个user会有排好序的推荐item list。而评估这个ranking的质量,是通过给定ground truth items,也就是用户有过交互,但是没有出现在训练集中的items,也叫做相关items(relevant items)。评估一个推荐算法的质量,是将这些相关items排序比不相关的items靠前,即算法会对一个user产生一个ranking R,例如R={3,5}代表user的两个相关的items分别排第3和第5。此时,只需要计算该ranking R的score,就可以评估该推荐算法的质量。

 

基于这样的评估方法, 我们可以设计不同的evaluation metrics:

AUC:模型将相关items排序高于不相关items的可能性(likelihood)

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
KDD2021是国际上知名的数据挖掘和知识发现领域的会议,而本次会议的一篇文章题为《反事实解释及在可解释人工智能的应用》。这篇文章主要讨论了反事实解释的概念以及其在可解释人工智能(XAI)的应用。 首先,文章介绍了反事实解释的概念。反事实解释是指对于一个已知的事件或观察结果,通过推理和分析来揭示出如果某些条件或因素不同,将会产生不同的结果。它是一种通过对现实情况进行修改或替代来推断新结果的方法。 然后,文章探讨了反事实解释在可解释人工智能的应用。可解释人工智能旨在使机器学习模型的决策过程能够被人理解和解释。在这方面,反事实解释可以帮助我们理解模型的决策过程以及预测结果。通过揭示如果某些条件不同,模型将做出不同的决策,我们可以获得关于模型行为的更深入理解。 最后,文章讨论了如何将反事实解释应用于可解释人工智能。作者提出了一种基于因果推理的反事实解释方法,该方法将因果关系和反事实推理相结合,以在可解释人工智能提供更准确和可靠的解释。作者通过实验证明了该方法的有效性,并展示了其在实际问题的应用潜力。 总的来说,这篇文章介绍了反事实解释的概念及其在可解释人工智能的应用。通过使用反事实解释,我们可以更好地理解机器学习模型的决策过程,并提供更准确和可靠的解释。这对于推动可解释人工智能的研究和发展具有重要意义。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值