#论文题目:HyperSCI:Learning Causal Effects on Hypergraphs(HyperSCI:基于超图的因果学习)
#论文地址:https://arxiv.org/abs/2207.04049
#论文源码开源地址:暂无
#论文所属会议:KDD 2022
#论文所属单位:弗吉尼亚大学夏洛茨维尔分校、微软

一、前序知识
-
因果推断:在常用的机器学习算法中,关注的是特征之间的相关性,而无法去识别特征之间的因果性,但很多时候在做决策与判断的时候,我们需要的是因果性,只有这样,才能说明是否缺少A导致B的变化。具体解释详见《因果推断——简介》、《大白话谈因果系列文章》
-
超图:是一种包含多种节点的集合,一个集合中的节点相互具有关系,同一个节点可以存在在多个集合中。(我本科毕业论文就是基于超图来研究的)
关于超图的形象解释引用论文中的图示如下(a):

-
一阶干涉和高阶干涉:
- 一阶干涉:如图所示,在 u u u1、 u u u2、 u u u3 都参与的聚会(gathering event)中即它们在同一条超边(hyperedge)内,个体 u u u1的感染结果(outcome)会受到其一阶个体 u u u2、 u u u3的影响。我们将 u u u2—> u u u1、 u u u3—> u u

本文介绍了一种名为HyperSCI的模型,它利用超图结构来解决因果推断问题,特别关注高阶干涉。通过混杂因子表征学习和注意力机制下的高阶干涉模型,文章提出了一种方法来估计个体在超图干涉下的实验效应。模型旨在捕捉群体交互并理解政策干预对COVID-19感染风险的影响。
最低0.47元/天 解锁文章
5397

被折叠的 条评论
为什么被折叠?



