tensorflow学习
paranoid_CNN
恒久的csdn学习。
展开
-
一、ubuntu下tensorflow的安装。
第一步:首先看一下电脑里是否已装python,版本是什么。命令分别为:whereis python和直接在终端输入python命令,看显示是2.7版本还是3.x版本。第二步: 输入以下指令:对于2.7版本$ sudo apt-get install python-pip python-dev对于3.x版本$sudo apt-get install python3-pip python3-de原创 2017-10-17 19:40:23 · 1289 阅读 · 0 评论 -
二、tensorflow线性拟合实例。
目的,给定一堆(本博客为100个)离散的点,通过单层的神经网络进行学习,工具tensorflow,下面开始具体教程:首先创造数据:import tensorflow as tfimport nump as np**create data**x_data = np.random.randn(100).astype(float32)y_data = x_data*0.3 + 0.7这个数据是我原创 2017-10-18 17:47:45 · 828 阅读 · 0 评论 -
三、tensorflow之session
tensorflow中的会话功能(session)用来激活tensorflow结构中的变量,所有的变量要访问都要先通过session激活。 一个例子: 两个矩阵的内积:#定义两个矩阵#coding=utf-8import tensorflow as tfmatrix1 = tf.constant([[2,2]])matrix2 = tf.constant([[3],原创 2017-10-18 21:13:31 · 584 阅读 · 0 评论 -
四、tensorflow之variable(变量)
还是通过学习教程中的例子来备忘一下: 写一个变量,每次变量加1。import tensorflow as tfstate = tf.Variable(0, name='baba')one = tf.constant(1)new_value = tf.add(state, one)udpate = tf.assign(state, new_value)接下来一行代码非常重要,因为上述代码我们定原创 2017-10-18 21:22:22 · 377 阅读 · 0 评论 -
五、tensorflow之传入值(placeholder)
placeholder,顾名思义,就是一个储存东西的地方,这样的定义有点像变量variable,但他和变量完全不一样,因为每次要用,必须要和搭配字典传入新值后才能激活,不需要初始化。 下面代码例子: 计算两个数相乘import tensorflow as tfinput1 = tf.placeholder(tf.float32)input2 = tf.placeholder(tf.float原创 2017-10-18 21:30:33 · 1131 阅读 · 0 评论 -
六、tensorflow之添加层。
对于tensorflow来讲,利用python添加层是通过定义函数定义的。 比如,定一个层,实现activation(x*w+b) , activation是激活函数。import tensorflow as tfdef add_layer(inputs, in_size, out_size, activation=None): Weights = tf.Variable(tf.random原创 2017-10-19 20:54:10 · 552 阅读 · 0 评论 -
七、tensorflow之构建网络。
在前面的学习中,我们学会了如何通过tensorflow添加新层,具体代码如下:import tensorflow as tfimport numpy as npdef add_layer(inputs, input_size, out_size, activation_function == None): Weights = tf.Variable(tf.random_normal([inp原创 2017-10-23 21:59:13 · 467 阅读 · 0 评论 -
八、tensorflow之结果可视化
import tensorflow as tfimport numpy as npdef add_layer(inputs, input_size, out_size, activation_function == None): Weights = tf.Variable(tf.random_normal([input_size, out_size])) biases = tf原创 2017-10-24 17:45:50 · 591 阅读 · 0 评论