placeholder,顾名思义,就是一个储存东西的地方,这样的定义有点像变量variable,但他和变量完全不一样,因为每次要用,必须要和搭配字典传入新值后才能激活,不需要初始化。
下面代码例子:
计算两个数相乘
import tensorflow as tf
input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)
output = tf.multiply(input1, input2)
框架搭建结束,使用session功能激活框架
with tf.Session() as sess:
print(sess.run(output, feed_dict = {input1:[3.], input2:[4.]}))
如session部分代码,在运行的过程中由于没有像variable那样初始化,所以必须要使用字典进行传入值。
注意:tensorflow中tf.mul tf.sub tf.neg 已经废弃 ,分别可用tf.multiply tf.subtract tf.negative替代。