五、tensorflow之传入值(placeholder)

placeholder,顾名思义,就是一个储存东西的地方,这样的定义有点像变量variable,但他和变量完全不一样,因为每次要用,必须要和搭配字典传入新值后才能激活,不需要初始化。
下面代码例子:
计算两个数相乘

import tensorflow as tf
input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)

output = tf.multiply(input1, input2)

框架搭建结束,使用session功能激活框架

with tf.Session() as sess:
  print(sess.run(output, feed_dict = {input1:[3.], input2:[4.]}))

如session部分代码,在运行的过程中由于没有像variable那样初始化,所以必须要使用字典进行传入值。

注意:tensorflow中tf.mul tf.sub tf.neg 已经废弃 ,分别可用tf.multiply tf.subtract tf.negative替代。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值