说明:
- 数据集:DEAP
- 参考论文:《基于EEG脑网络的情感分析与识别》
本文主要对DEAP数据集进行简单的介绍,以及对实验步骤进行大体的介绍。
一.对DEAP数据集的整体描述
DEAP数据集记录了共计 32 名被试(男 16 人,女16 人)在观看 40 段不同情感标记的音乐视频节选时的各种生理信号,如 EEG、GSR、EMG、PPG 等。其中的 EEG 信号是采用“10-20”国际导联标准的 32 导联电极帽采集,在 512Hz 采样频率下采集的被试的 EEG 信号。所有被试均被要求在观看完视频后,按照从 1~9 的大小关系,标记所观看视频的 Valence(效价)、Arousal(唤醒度)、Dominance(优势度)的大小。之后再经过去除伪迹处理,降低采样率为 128Hz。每个样本数据长 63s,去掉 3s 的基线之后,保留待处理的 60s 数据。
二.对各个文件夹数据的介绍
- data_original文件夹
存放bdf文件,共32个。文件名为s01.bdf~s32.bdf,分别是32名被试者全部的实验数据。 - data_slice文件夹
来源于data_original文件夹里的bdf文件,是对bdf中的数据进行分割处理后得到的。 - processed_single_epoch文件夹
processed_single_epoch文件夹包含s01-s32,共32个子目录。对应32名被试者。每个子目录有命名如s01_p32_01.set~s01_p32_40.set的文件。可以用EEGLAB读取。以s01_p32_01.set为例说明。s01_p32_01.set是编号为s01的被试者参与的40次实验中顺序为01的情感数据。这个文件里的情感数据时长60s,只包括32个脑电通道。 - img_channels文件夹
包含s01-s32,共32个子目录,对应32名被试者。每个子目录又包含01~40,共40个下级目录,对应每名被试者的40次实验。
每个下级目录里存放了32张图片,这是将每次实验的32个EEG通道数据转换成的32张时频域谱图。 - data_preprocessed_matlab文件夹和data_preprocessed_python文件夹
这两个文件夹内容相同,只是存储的格式不同。
data_preprocessed_matlab存储的是mat文件,使用Matlab的load命令可直接打开。(我用的是matlab)
data_preprocessed_python 存储的是dat文件。
三.实验的整体设计思路
1.数据处理:
将得到的已经去除伪迹的 EEG 时间序列经过小波包分解到 Theta、Alpha、Beta1、Beta2 波段。
2.构建关联矩阵:
构建 EEG 脑网络关键是定义网络的节点与边。本文采头皮电极作为节点,利用同步性测量方法估计任意两个电极之间的边的大小,构全部 32个通道的全脑 EEG 功能脑网络。不考虑同步性的方向,本文构建的是无向 EEG 功能脑网络,即得到 32*32 的对称的关联矩阵。
3.二值化处理:
设置阈值(稀疏度范围),两节点之间的功能连接估计值大于阈值则将边设为 1,否则设为 0,从而得到二值化的 0-1 矩阵。
4.提取网络属性:
在得到的 0-1 矩阵上计算网络的均值、5 种全局属性、2 种局部属性,并使用曲线下面积 AUC 计算整个给定的稀疏度范围上的各属性的
AUC 值;
5.分析:
分析比较不同情感类型的脑网络的整体同步大小,寻找组间网络拓扑差异性。