脑机接口
文章平均质量分 76
脑电情感识别研究
Zzz5270
这个作者很懒,什么都没留下…
展开
-
网络社区划分算法
网络社区划分算法 目录 [隐藏] ...转载 2019-10-15 15:35:28 · 1589 阅读 · 1 评论 -
论文总结——从脑电图(EEG)中提取稳定的模式进行识别
本篇文章主要是在阅读了论文之后,自己做一个总结。《Identifyecognition from EEGing Stable Patterns over Time for Emotion Recognition from EEG》《从脑电图(EEG)中提取稳定的模式进行识别》Abstract采用机器学习的方法,研究了情绪识别过程中脑电图随时间变化的稳定模式。主要研究情绪识别中脑电图稳定...原创 2019-09-15 21:20:37 · 5655 阅读 · 3 评论 -
论文总结——研究基于脑电图的深度神经网络情感识别的关键频带和通道
本篇文章主要是在阅读了论文之后,自己做一个总结。《Investigating Critical Frequency Bands and Channels for EEG-Based Emotion Recognition with Deep Neural Networks》《研究基于脑电图的深度神经网络情感识别的关键频带和通道》Abstract为了调查研究关键频带和通道,文章介绍了“深...原创 2019-09-11 14:38:26 · 1993 阅读 · 0 评论 -
基于互信息的EEG脑网络情感识别(六)——网络属性及特征提取
上一篇文章介绍了矩阵的二值化,并建立了二值矩阵这篇主要讲一下网络属性的计算,也就是特征的提取网络属性这里我参考的一篇论文里,选取了五种全局属性和两种局部属性,用他们作为特征进行情感识别。下面先对这几个属性做一个概述。全局属性:聚类系数聚类系数是用来表示图中节点的聚集程度。规则网络与小世界网络具有较高的聚类系数,而随机网络的聚类系数则较低。Ci 表示的是第 i 个节点的聚类系数,...原创 2019-09-30 10:10:32 · 5571 阅读 · 13 评论 -
皮尔逊相关系数计算 Python
在研究脑网络时,看到了用皮尔逊相关系数计算脑功能网络的,就简单的学了一下它的计算这里用到的是Python的numpy库首先,最前面要加import,先导入这个模块import numpy as np然后,调用corrcoef()其中data是原始矩阵,pcc_matrix是生成的pcc矩阵比如data为32*1280的矩阵,pcc_mattix则为32*32的矩阵每个元素值的...原创 2019-07-24 11:40:40 · 4581 阅读 · 0 评论 -
基于互信息的EEG脑网络情感识别(五)——矩阵二值化
上一篇文章介绍了互信息矩阵的建立这篇文章主要讲一下矩阵的二值化矩阵二值化对于一个MI矩阵来说,二值化就是选择一个合适的阈值,如果MI值大于阈值,则记为1,如果MI值小于阈值,则记为0 。按照此方法,依次处理矩阵中的每个值,就能得到二值矩阵。在解决该问题时遇到的难点和问题观察得到的MI矩阵可以发现,不同被试者不同次实验中,有些实验数据差别较大,所以重点就在于阈值的选择。刚开始是这样...原创 2019-09-30 10:10:16 · 3940 阅读 · 7 评论 -
基于互信息的EEG脑网络情感识别(四)——建立MI矩阵
上一篇文章介绍了通过小波包分解,将数据按频率分成四个波段。其实(二)、(三)两篇都是对数据的预处理。这篇文章主要讲一下互信息MI矩阵的建立。用到的数据是在第二篇文章处理之后的数据。下面先来介绍一下互信息的概念:互信息(MI),是一种信息熵,是测量随机变量的信息量的常用方法之一,可以用来估计任意两个电极的时间序列之间的相互依赖关系,也常用来衡量电极间的信号同步性大小。假设一个离散的随机变量...原创 2019-09-30 10:09:28 · 3910 阅读 · 5 评论 -
基于互信息的EEG脑网络情感识别(三)——数据预处理(分频段)
上一篇文章对DEAP数据集中的data_preprocessed_matlab文件夹的文件进行了数据的截取。这篇文章是接着上一篇,将数据按频率分成四个波段。用到的数据是在上一篇文章中处理之后生成的数据。将经过降采样率的样本通过小波包分解,得到 Theta(4–7Hz)、Alpha(8–13Hz)、Beta(13–30Hz)。小波包分解能够将频带进行多层进一步划分,相对于小波变换而言,能够将...原创 2019-09-30 10:09:13 · 3648 阅读 · 16 评论 -
基于互信息的EEG脑网络情感识别(二)——数据预处理(截取)
上一篇文章对DEAP数据集进行简单的介绍,以及对实验步骤进行大体的介绍。这篇文章是接着上一篇,开始数据的截取操作。在DEAP数据集中,data_preprocessed_matlab文件夹里的数据,是可以用matlab进行操作的,下来的操作都是对这个文件夹。所以,我们再来详细了解一下这个文件夹的内容:该文件夹包含s01.mat~s032.mat,表示32个被试者的数据。其中每个.ma...原创 2019-09-30 10:08:51 · 3723 阅读 · 20 评论 -
基于互信息的EEG脑网络情感识别——流程概述以及DEAP数据集简介
说明:数据集:DEAP参考论文:《基于EEG脑网络的情感分析与识别》本文主要对DEAP数据集进行简单的介绍,以及对实验步骤进行大体的介绍。一.对DEAP数据集的整体描述DEAP数据集记录了共计 32 名被试(男 16 人,女16 人)在观看 40 段不同情感标记的音乐视频节选时的各种生理信号,如 EEG、GSR、EMG、PPG 等。其中的 EEG 信号是采用“10-20”国际导联标准...原创 2019-06-22 08:48:03 · 4015 阅读 · 10 评论 -
基于互信息的脑网络情感识别——代码总结
总结实验过程,生成文件目录,以及相应代码1.将每个人的40次实验数据数据,分成40个文件,并截取前32路脑电,截取中间20秒。文件夹:“data_preprocessed_matlab” ——> “截取后数据”代码:文件——“test3.m”,“mainProcessDataScript.m”,“getElectrodeMapping.m”(函数)2.分四个波段文件夹:“截取后...原创 2019-10-31 16:32:57 · 1633 阅读 · 5 评论