八步爬取租房信息

本文详细介绍了使用Python进行网络爬虫,通过多进程和协程技术爬取链家网站上的租房信息,包括每页源码爬取、页码遍历、城市区域获取、目标信息解析、数据保存到CSV文件以及主程序的设计和运行。

使用python的多进程+协程爬取链家所有租房信息

一、首先完成每张网页的源代码爬取

代码的功能和解释写在代码注释中

def urlgo(url):
	#使用ssl模块,主要是为了能爬取https开头的网站
    context = ssl._create_unverified_context()
    #爬取网页时加上请求头,模拟正常访问网页
    header = {
   
   
        "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.142 Safari/537.36"}
    requset = urllib.request.Request(url, headers=header)
    response = urllib.request.urlopen(requset, context=context)
    data = response.read().decode("utf-8")
    #返回值为网页的源代码
    return data
二、获取网页中所有的页码,并再次爬取
def getpage(url):
	'''
    :param url: 该参数为某个地区的网址
    :return: 指定地区的最大页码
    '''
    data = urlgo(url)
    pageList = re.findall(r'data-totalPage=(\d{1,3})',data
Scrapy是一个强大的Python爬虫框架,可以用来高效地从网页上抓取数据。如果你想用Scrapy来爬取高铁信息(如车次、出发时间、到达时间等),需要按照以下几个步骤完成: --- ### **第一步:明确目标** 确定你要获取的信息来源网站,比如中国铁路12306官网或其他提供列车时刻表查询的服务平台。 **注意:** 由于某些官方站点(例如12306)对爬虫有严格的限制措施(验证码、反爬机制等),可以直接考虑其他公开API或第三方服务作为替代方案,避免触发风控。 --- ### **第二步:安装依赖库** 首先确保已安装Scrapy框架以及相关的HTTP请求解析工具: ```bash pip install scrapy lxml requests pandas ``` 如果要处理JavaScript渲染页面内容,则需额外引入Selenium支持浏览器自动化操作。 ```bash pip install selenium # 安装对应版本驱动程序(ChromeDriver/Firefox Gecko) ``` --- ### **第三步:创建项目并设计结构** 运行命令初始化新的Spider工程目录: ```bash scrapy startproject highspeedrailway_spider cd highspeedrailway_spider ``` 进入新建好的文件夹路径下继续配置settings.py启用必要的中间件组件,并调整下载延迟参数降低频率以免被封禁IP地址。 --- ### **第四步:编写具体逻辑规则** #### 示例代码片段 假设我们访问某虚拟URL提取特定日期区间内的所有D字头动车组班列详情列表项... ```python import scrapy class HighSpeedRailwaySpider(scrapy.Spider): name = 'high_speed_railways' # 起始链接设置 def __init__(self, *args, **kwargs): super(HighSpeedRailwaySpider, self).__init__(*args,**kwargs) url_base='http://example-train-api.com/query?date=%s&train_type=D' % kwargs.get('target_date') self.start_urls=[url_base] custom_settings={ "DOWNLOAD_DELAY": 5, "CONCURRENT_REQUESTS_PER_DOMAIN" : 8 , } def parse(self,response): trains=response.css('.train-item') # 假设HTML标签里包含此类名 for train in trains: yield { 'train_no':train.xpath('./div[@class="number"]/text()').get(), 'departure_time':train.css('.time-depart::text').extract_first(), 'arrival_time':train.select_one('.station-arrive span:last-child').string.strip() } ``` 以上脚本展示了如何通过CSS选择器定位关键字段位置然后逐一读取出对应的文本值保存成JSON格式结果集导出至本地磁盘存储供后续分析应用阶段加载利用起来非常方便快捷省心了有没有! --- ### **第五步:启动任务及查看输出成果** 最后执行下面指令开始采集过程同时将最终生成的数据存放到指定的json/csv文件当中便于进一步可视化展示统计规律发现隐藏价值点等等哦~ ```shell script scrapy crawl high_speed_railways -a target_date=YYYY-MM-DD -o output.json ``` --- ### **第六步:优化与扩展功能** 当基础版完成后还可以增加更特性提升用户体验满意度指数级上升比如说加入缓存策略减少不必要的重复网络请求次数加快整体效率;亦或是结合地理信息系统绘制动态地图呈现全国范围内各条线路分布态势图样一目了然清晰可见效果显著呢~
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值