ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning学习笔记

相关介绍

从DAFormer溯源到这篇文章,ClassMix主要是集合了伪标签和一致性正则化,思想来源于CutMix那条研究路线,但是优化了CutMix中的标签污染的情况,后续会说。一致性正则化的半监督学习在图像分类中取得了显著的进展,主要利用强大的数据增强对未标记图片加强一致性,然而在半监督语义分割中被证明是无效的。

主要思想

  1. 从一张图片中随机选取一半的类粘贴到另外一张图片上,形成一个新的样本,标签也不需要真正注释,只需要获取原来的两张图对应的标签即可。
  2. 利用网络学习原始图像的像素级语义(利用有标签的数据集训练网络),对混合的图像的预测被强制训练成和混合前一致。
  3. 根据分类一致性正则化趋势,还继承了熵最小化,来鼓励网络进行低熵预测。

方法

在这里插入图片描述
如图所示,ClassMix使用两张没有标记的图片A、B,然后分别通过网络f(θ)生成对应的Sa、Sb。随机获取Sa中的一半的类,然后获取到类别像素点的位置为1,其余位置为0,生成一个Mask掩码M,把A、B两张图片作为输入同时加上掩码M,生成一张增强的图片Xa,其对应的标签Ya,通过Sa,Sb和M获取对应的标签Ya,由于混合策略的性质,刚开始可能会出现人工标签,但随着训练的进行,会越来越少。
伪代码如下:
在这里插入图片描述

Mean-Teacher

阅读一下 Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results这篇论文。
Mean teacher 笔记

损失函数

在这里插入图片描述
Xl是从带标签的数据集中均匀随机采样的图像,Yl是对应的ground-truth语义图。
Xa是增强方法产生的图像,Ya是对应的人工标签。
λ是一个控制监督和非监督之间平衡的超参数。
ℓ是交叉熵损失函数

交叉熵损失

在这里插入图片描述
W,H对应着图像的宽度和高度,该损失函数就是一个多分类的损失函数。Y(i,h,c)和S(i,j,c)分别对应着目标和预测中(i,j)这个位置对应着c这个类别的概率。

标签污染

对于物体的边界来说会有很大的不确定性,因为分割任务在接近边界时候是最难的,这就会导致一个污染的问题,如下图所示:当由M选择的类被粘贴到图像B的顶部时,其相邻的上下文将经常改变,例如中间那个图,按照白色的线作为决定边界线,将下半部分粘贴到C上,就会导致在红色和绿色之间出现一些奇奇怪怪的类别(一些不确定性的类别),就会增添不确定性,就会得到较差的人工标签。伪标记有效地缓解了这一问题,因为每个像素的概率质量函数被改变为最可能类别的一个热向量(非黑即白策略),从而锐化了这个问题,从而导致不会受到污染。
在这里插入图片描述

实验

使用PyTorch框架,两块V100训练,采用了基于ResNet101为backbone的DeepLab-V2框架。刚开始在ImageNet和MSCoCo上预训练,在Cityscapes和Pascal Voc2012两个数据集上给出结果。
在这里插入图片描述
在这里插入图片描述

实验反思

作者对于在Cityscapes表现良好的原因归结于数据中的图片的分布类似(论文分析了数据中类别的分类情况),还有一个原因就是类别的分布不是很均匀,而是集中在一些地方(同上),所以将一个图像粘贴到另外一个图像就显得很合理,效果也不错。但是对于Pascal VOC 2012就不一样了,所取得结果虽然也具有竞争性,在一些类别上达到了stoa的水平,但是不如在Cityscapes整体取得的效果。主要原因是Pascal VOC 2012这个数据集中类别比较少,生成的mask掩码会出现重复的情况,所以效果会不如,另外与Cityscapes不同,Pascal的数据集中类彼此之间不是那么的相似,因此随机将两个图中的类别放到一起会经常出现不合理的情况,所以会影响效果,但是ClassMix的性能仍然处于sota的水平。

参考资料

  • https://arxiv.org/abs/2007.07936
  • https://github.com/WilhelmT/ClassMix
  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值