【LeetCode】【算法】62. 不同路径

LeetCode 62. 不同路径

题目描述

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
在这里插入图片描述

解题思路

思路:这道题和上面那道题很类似,只不过这题求的是有多少种不同的路径,只需要稍微改变一下递推式就可以,这题的递推式实际上就是对从上面走过来的可能和从左边走过来的可能进行求和,即dp[i][j]=dp[i-1][j]+dp[i][j-1]

代码

class Solution {
    public int uniquePaths(int m, int n) {
        if (m == 1 && n == 1) return 1;
        int[][] dp = new int[m][n];
        dp[0][0] = 0;
        // 初始化行
        for (int i = 1; i < n; i++){
            dp[0][i] = 1;
        }
        // 初始化列
        for (int i = 1; i < m; i++){
            dp[i][0] = 1;
        }
        // 求解dp
        for (int i = 1; i < m; i++){
            for (int j = 1; j < n; j++){
                dp[i][j] = dp[i-1][j] + dp[i][j-1];
            }
        }
        return dp[m-1][n-1];
    }
}

这里不初始化也可以,直接在求解dp时候做边界判断:

  • 若没有上侧格子,则dp[i][j]=dp[i][j-1]
  • 若没有左侧格子,则dp[i][j]=dp[i-1][j]
  • 上侧左侧都有,则dp[i][j]=dp[i-1][j]+dp[i][j-1]
  • 上侧左侧都没有,也就是左上角,dp[i][j]=1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值