借着这篇文章其实我是想告诉大家求取任意两个节点之间的方法 ,当然大家知道这种方法之后,一定会懂得如何求解任意一个节点的高度的问题,而两个节点之间的最大距离就是两个节点高度之和的问题而已,具体细节请大家看看下文,但是这一篇文章中的关于求任意一点的高度思想,是解决二叉树螺旋遍历的基础,希望大家理解后可以看下小生的关于二叉树螺旋遍历的文章,大家共同进步!!!
求一个二叉树中任意两个节点间的最大距离,
两个节点的距离的定义是这两个节点间边的个数,
比如某个孩子节点和父节点间的距离是1,和相邻兄弟节点间的距离是2,优化时间空间复
杂度。
思路:1.对二叉树中的任一个节点,求得它到左子树中最深的结点的距离ldis,再求得它到右子树中最深的节点的距离rdis
2.则经过此节点的任意两点的最大距离Maxdis=ldis+rdis。
3.因此,遍历二叉树中每个节点,求得经过每个节点的任意两节点间的最大距离,比较找出最大的。
#include<iostream>
#include<vector>
using namespace std;
struct BinaryTreeNode
{
int m_value;
BinaryTreeNode *m_pleft;
BinaryTreeNode *m_pright;
};
//int dis=0;
int Maxdis=0;
void creatBinaryTree(BinaryTreeNode * &r,int m)
{
if(r==NULL)
{
BinaryTreeNode *t=new BinaryTreeNode();
t->m_pleft=NULL;
t->m_pright=NULL;
t->m_value=m;
r=t;
}
if(m < r->m_value)
creatBinaryTree(r->m_pleft,m);
if(m > r->m_value)
creatBinaryTree(r->m_pright,m);
//if(m == r->m_value)
// cout<<"加入重复结点!"<<endl;
}
int get_depth(BinaryTreeNode *r);
void FindMaxDis(BinaryTreeNode *r)
{
int ldis=0,rdis=0;
//vector<int> vec;
if(r==NULL)
return;
if(r->m_pleft)
{
ldis=get_depth(r->m_pleft);
}
if(r->m_pright)
{
rdis=get_depth(r->m_pright);
//vec.pop_back();
}
if((ldis+rdis)>Maxdis)
Maxdis=ldis+rdis;
FindMaxDis(r->m_pleft);
FindMaxDis(r->m_pright);
}
int get_depth(BinaryTreeNode *r)
{
int depth=0;
if(r)
{
int a=get_depth(r->m_pleft);
int b=get_depth(r->m_pright);
depth=(a>b)?a:b;
depth++;
}
return depth;
}
int main()
{
BinaryTreeNode *r=NULL;
creatBinaryTree(r,10);
creatBinaryTree(r,5);
creatBinaryTree(r,12);
creatBinaryTree(r,4);
creatBinaryTree(r,3);
creatBinaryTree(r,7);
creatBinaryTree(r,8);
creatBinaryTree(r,9);
creatBinaryTree(r,2);
cout<<get_depth(r)<<endl;
FindMaxDis(r);
cout<<Maxdis<<endl;
return 0;
}