第一章 机器学习(浙大胡浩基教授)笔记

ARTHUR SAMUEL对机器学习的定义:
机器学习是这样的领域,它赋予计算机学习的能力,(这种学习能力)不是通过显著式编程获得的。
让计算机自己总结的规律的编程方法,叫做非显著式编程。
我们规定了行为和收益函数后,让计算机自己去找最大化收益函数的行为。

机器学习的定义
 一个计算机程序被称为可以学习,是指它能够针对某个任务T和某个性能指标P,从经验E中学习。这种学习的特点是,它在T上的被P所衡量的性能,会随着经验E的增加而提高。

机器人冲咖啡的例子:
  任务T: 设计程序让机器人冲咖啡
  经验E:机器人多次尝试的行为和这些行为产生的结果
  性能测度P:在规定时间内成功冲好咖啡的次数

据经验E来提高性能指标P的过程是典型的最优化问题

四个机器学习的任务
(1)教计算机下棋;
(2)垃圾邮件识别,教计算机自动识别某个邮件识别是垃圾邮件
(3)人脸识别,教计算机通过人脸的图像识别这个人是谁;
(4)无人驾驶,教计算机自动驾驶汽车从一个指定地点到另一个指定地点。

根据经验E,1和4是一类,2和3是一类
2和3是一类,因为经验E是完全由人搜集起来输人进计算机的,经验E = 训练样本和标签的集合,此类是监督学习
1和4是一类,因为经验E是由计算机与环境互动获得的,定义行为产生收益函数,让计算机改变自己的行为模式去最大化收益函数,此类是强化学习,计算机通过与环境的互动逐渐强化自己的行为模式。

监督学习根据数据标签存在与否的分类
(1)传统的监督学习(Traditional Supervised Learning); 每一个训练数据都有对应的标签
* 支持向量机(SUPPORT VECTOR MACHINE )
* 人工神经网络(NEURAL NETWORKS)
* 深度神经网络 (Deep Neural Networks )

(2)非监督学习(Unsupervised Learning) ; 所有训练数据都没有对应的标签
需要假设:
同一类的训练数据在空间中距离更近,
样本的空间信息,
设计算法将它们聚集为两类,
无监督学习

聚类(Clustering)
EM算法(Expectation-Maximization algorithm)
主成分分析(Principle Component Analysis )
(3)半监督学习( Semi-supervised Learning); 训练数据中一部分有标签部分没有标签
少量的标注数据+大量未标注数据=更好的机器学习算法

另一种分类方法是基于标签的固有属性


监督学习:
* 分类:标签是离散的值
* 回归:标签是连续的值

机器学习算法的过程


    维度和标准。选择合适的特征作为维度n维,划分区域标准
1
特征提取(Feature Extraction):通过训练样本获得的,对机器学习任务有帮助的多维度数据。
特征提取、特征选择,
不同的算法对特征空间做不同的划分,
不同的结果

注:机器学习的重点,在已经提取好特征的前提下,如何构造算法获得更好的性能

没有免费午餐定理


任何一个预测函数,如果在一些训练样本上表现好,那么必然在另一些训练样本上表现不好,如果不对数据在特征空间的先验分
布有一定假设,那么表现好与表现不好的情况一样多。
如果不对特征空间的先验分布有假设,则所有算法的表现都一样
机器学习的本质:有限的已知数据,复杂的高维特征空间中,预测未知的样本的属性和类别
 

浙江大学人工智能课程课件,内容有: Introduction Problem-solving by search( 4 weeks) Uninformed Search and Informed (Heuristic) Search (1 week) Adversarial Search: Minimax Search, Evaluation Functions, Alpha-Beta Search, Stochastic Search Adversarial Search: Multi-armed bandits, Upper Confidence Bound (UCB),Upper Confidence Bounds on Trees, Monte-Carlo Tree Search(MCTS) Statistical learning and modeling (5 weeks) Probability Theory, Model selection, The curse of Dimensionality, Decision Theory, Information Theory Probability distribution: The Gaussian Distribution, Conditional Gaussian distributions, Marginal Gaussian distributions, Bayes’ theorem for Gaussian variables, Maximum likelihood for the Gaussian, Mixtures of Gaussians, Nonparametric Methods Linear model for regression: Linear basis function models; The Bias-Variance Decomposition Linear model for classification : Basic Concepts; Discriminant Functions (nonprobabilistic methods); Probabilistic Generative Models; Probabilistic Discriminative Models K-means Clustering and GMM & Expectation–Maximization (EM) algorithm, BoostingThe Course Syllabus Deep Learning (4 weeks) Stochastic Gradient Descent, Backpropagation Feedforward Neural Network Convolutional Neural Networks Recurrent Neural Network (LSTM, GRU) Generative adversarial network (GAN) Deep learning in NLP (word2vec), CV (localization) and VQA(cross-media) Reinforcement learning (1 weeks) Reinforcement learning: introduction
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值