VM虚拟机Ubuntu 22.04 LVM磁盘扩容报错:GPT PMBR size mismatch (104857599 != 209715199) will be corrected by wri

欢迎关注公众后”三哥说运维“ 之后在这更新哈

背景:原本是50G的,添加了50G磁盘,但是系统显示报错如标题。

1. 虚拟机增加硬盘容量

2. 查看ubuntu中当前硬盘信息

    输入命令 df -h

 

输入命令 fdisk -l 出现报错

解决:GPT PMBR size mismatch (104857599 != 209715199) will be corrected by write.

输入命令 parted -l 修复分区表

3. 使用 parted 追加容量到/dev/sda3

输入命令 parted /dev/sda 

输入命令 unit s 设置Size单位,方便追加输入

输入命令 p free 查看详情

输入命令 resizepart 3 追加容量到sda3

输入命令 209715166s空闲容量区间Free Space结束位置

输入命令 q 退出

4.更新LVM中pv物理卷

输入命令 pvresize /dev/sda3 更新pv物理卷

输入命令 pvdisplay 查看状态

5.LVM逻辑卷扩容

输入命令 lvdisplay获取到这个逻辑卷名称

 输入命令 lvextend -l +100%FREE /dev/ubuntu-vg/ubuntu-lv 逻辑卷扩容

输入命令 resize2fs /dev/ubuntu-vg/ubuntu-lv 刷新逻辑卷

如上图,已经扩容至100G

### 大模型对齐微调DPO方法详解 #### DPO简介 直接偏好优化(Direct Preference Optimization, DPO)是一种用于改进大型语言模型行为的技术,该技术通过结合奖励模型训练强化学习来提升训练效率与稳定性[^1]。 #### 实现机制 DPO的核心在于它能够依据人类反馈调整模型输出的概率分布。具体来说,当给定一对候选响应时,DPO试图使更受偏好的那个选项具有更高的生成概率。这种方法不仅简化了传统强化学习所需的复杂环境设置,而且显著增强了模型对于多样化指令的理解能力执行精度[^2]。 #### PAI平台上的实践指南 为了便于开发者实施这一先进理念,在PAI-QuickStart框架下提供了详尽的操作手册。这份文档覆盖了从环境配置直至完成整个微调流程所需的一切细节,包括但不限于数据准备、参数设定以及性能评估等方面的内容。尤其值得注意的是,针对阿里云最新发布的开源LLM——Qwen2系列,文中给出了具体的实例说明,使得即使是初次接触此类工作的用户也能顺利上手。 ```python from transformers import AutoModelForCausalLM, Trainer, TrainingArguments model_name_or_path = "qwen-model-name" tokenizer_name = model_name_or_path training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=8, num_train_epochs=3, ) trainer = Trainer( model_init=lambda: AutoModelForCausalLM.from_pretrained(model_name_or_path), args=training_args, train_dataset=train_dataset, ) # 假设已经定义好了train_dataset trainer.train() ``` 这段代码片段展示了如何使用Hugging Face库加载预训练模型并对其进行微调的过程。虽然这里展示的例子并不完全对应于DPO的具体实现方式,但它提供了一个基础模板供进一步定制化开发之用[^3]。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值